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Motivation and Background



The new challenges in IC industry

Leakage 
increases

Core #: 
from multi 

to many

3D 
integration

Dark 
silicon

l Scaling causes new challenges in IC industry.
l Solutions needed for new challenges.



The leakage problems

Leakage 
increases

Core #: 
from multi 

to many

3D 
integration

Dark 
silicon

l Leakage power becomes significant.
l Leakage power highly and nonlinearly relates to 

temperature: dangerous and difficult to model.
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than the linear approximation based methods, this DTM can
only be used for single-core systems instead of multi-core
systems as stated in [19].

The discussions above reveal that it is difficult to design an
accurate leakage-aware DTM method for multi-core systems.
In this work, we resolve this problem by proposing a leakage-
aware DTM using compact piecewise linear (PWL) model
based predictive control. The major contributions of this work
include:

• In order to solve the nonlinear control problem in
leakage-aware thermal management, we propose to use a
PWL thermal model to approximate the original nonlinear
thermal model. With the PWL thermal model, predictive
control is enabled for leakage-aware DTM.

• A unified formulation of the PWL thermal model for
leakage-aware DTM is derived. Specially, a systematic
Taylor expansion point selection scheme is developed
to formulate the PWL thermal model by exploiting the
thermal behavior property of the integrated multi-core
system. The resulted PWL thermal model formulation is
concise and elegant. Therefore, it can be integrated into
the predictive control framework seamlessly.

• To reduce the runtime and memory overheads of DTM,
sampling based model order reduction (MOR) is intro-
duced to reduce the size of the PWL thermal model.
Thanks to the sampling based MOR, the resulted compact
PWL thermal model achieves both high compression rate
and high accuracy.

• We propose the compact PWL thermal model based
predictive control framework by integrating the compact
PWL thermal model into model predictive control (MPC).
Although being a nonlinear control, the compact PWL
thermal model based predictive control still retains the
concise structure of the traditional linear MPC. By using
the new temperature control method, accurate future
power recommendations can be computed for the multi-
core system.

• We have experimentally compared the new DTM method
with traditional DTM using linear thermal model based
MPC. Our numerical results show the new method out-
performs the traditional method in thermal management
quality with lower computing overhead.

II. BACKGROUND

In this section, the leakage power model used in this work
is introduced first. After that, we briefly review DTM using
model predictive control (MPC) and reveal its problem in
leakage power consideration.

A. Modeling of the leakage power

The total power of an integrated multi-core system is
composed of dynamic power pd and leakage power ps (which
is also called static power). The dynamic power depends on
the activity of the chip, and thus can be easily estimated
by performance counter based methods [20]. Unlike dynamic
power, leakage power ps is not directly related to the chip’s
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Fig. 1: Comparison of leakage of a PTM-MG 7 nm FinFET
from HSPICE simulation with leakage computed using 3-order
leakage model (2).

activity. Instead, it depends on the temperature of the chip,
and is expressed as [16], [21], [22]

ps = VddIleak(Tp), (1)

where Tp is a scalar representing the temperature at one place
of the chip,1 Ileak is the leakage current which is nonlinearly
related to temperature.

In this work, we use an n-order polynomial model to
accurately model the nonlinear leakage current Ileak(Tp) as

Ileak(Tp) = αnT
n
p + αn−1T

n−1
p + · · ·+ α0. (2)

In order to see the accuracy of the leakage model given
in (2), Fig. 1 shows an HSPICE simulation result of leakage
using 7 nm PTM-MG FinFET models for high-performance
applications (7 nm PTM-MG HP NMOS and HP PMOS)
provided online at [23], and the leakage computed by the
leakage model (with order 3). From the figure, we can see
that the leakage model (2) has high accuracy for all common
temperatures of multi-core chips.

Finally, the leakage power is accurately modeled by com-
bining equations (1) and (2).

B. Thermal management using model predictive control

In this part, we briefly introduce the MPC based DTM and
reveal its difficulty in handling leakage power. For detailed
introduction of MPC based DTM, please refer to our previous
work [12].

In order to use model predictive control (MPC) in DTM, a
thermal model of the multi-core system should be built first.
For an l-core system with m total thermal nodes, we can get
its thermal model as [4], [12], [16], [18]

GT (t) + C
dT (t)

dt
= BP (T, t),

Y (t) = LT (t),
(3)

where T (t) ∈ Rm is the temperature vector (distinguished
from scaler Tp), representing temperatures at m places of the
chip and package; G ∈ Rm×m and C ∈ Rm×m contain
equivalent thermal resistance and capacitance information,

1T introduced latter in (3) is a vector representing temperatures at
multiple positions.



The many-core challenge
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l Core # increases: tens or more cores on a single die.
l Difficult to coordinate cores for best performance 

under thermal constraint.



The problem of 3D integration
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l 3D IC: go vertical for higher integration density.
l High power density leads to high temperature, large 

stress, and reliability issues.
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STREAM: Stress and Thermal Aware Reliability
Management for 3D ICs

Hai Wang, Darong Huang, Rui Liu, Chi Zhang, He Tang, Member, IEEE, and Yuan Yuan

Abstract—Accurate and fast reliability management is im-
portant for 3D integrated circuits (3D ICs) because of the
severe on-chip thermal and reliability problems. However, due
to the lack of stress information and difficulties in implementing
management method for reliability, existing full-chip reliability
management methods suffer from low management accuracy and
high system performance degradation. In this work, we propose
a new stress and thermal aware reliability management method
for 3D ICs called STREAM. Unlike traditional methods which
do not perform explicit stress analysis due to the large computing
cost, STREAM employs an artificial neural network (ANN) based
stress model to estimate stress accurately at runtime. In order
to further improve the reliability management accuracy and
improve the system performance, a lifetime estimator with life-
time banking technology and a specially-designed lifetime model
predictive control are integrated into the reliability management
framework. Our numerical results show that STREAM performs
the stress and thermal aware full-chip reliability management
with both high accuracy and speed. It is able to boost the
performance of 3D ICs and outperforms the state-of-the-art 3D
IC reliability management method.

Index Terms—Reliability management, stress and thermal
aware, 3D IC, model predictive control, artificial neural network.

I. INTRODUCTION

3D integrated circuits (3D ICs) exploit z-direction of tradi-
tional 2D IC by integrating multiple silicon layers vertically
using through-silicon vias (TSV) to achieve performance im-
provements [1]. A 3D IC consisting of two layers connected
by TSVs is shown in Fig. 1. Although 3D IC has many ad-
vantages, its stacked structure brings about severe thermal and
reliability problems, because it has higher power density than
traditional 2D IC chips. These problems are very challenging
and are the major obstacles that prevent the commercializing
of 3D IC [2], [3].

Many researches have been done to solve the thermal issues
of 3D ICs. Wang et al. focused on 3D thermal modeling
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Fig. 1: A 3D IC microprocessor with two layers connected by
TSVs.

(a) Longitudinal-section view. (b) Cross-section view.

Fig. 2: Structure of a TSV used in 3D IC. The TSV is filled
with Cu and contains a SiO2 liner.

and analysis [4]. A TSV placement technique was proposed
in [5] to minimize lateral heat blockages caused by TSV
structures in 3D ICs. Cong et al. developed thermal-aware
placement approaches for 3D ICs to reduce the maximum
on-chip temperature [6], [7]. Dynamic thermal management
methods for 3D IC systems were proposed in [8], [9], [10],
[11]. However, these researches only consider temperature
itself, with reliability issues of 3D ICs ignored.

Different from traditional IC chips, 3D ICs contain a special
component TSV, whose structure is shown in Fig. 2. Because
of the existence of TSV, temperature has a much more complex
impact on the final reliability of 3D ICs. As a result, simple
temperature distribution optimization does not necessarily lead
to good reliability anymore for 3D ICs. Recently, many
researches have been done directly on the reliability issues
of 3D ICs [12], [13], [14]. Among these issues, reliability
problems caused by stress, especially TSV induced stress, have
the most significant impact: the tensile stress generated by
thermal coefficient mismatching of TSV and silicon can cause
reliability problems such as cracking and timing violation [15].
To solve these problems, some techniques such as TSV
tapering and TSV placement were introduced in [16], [17],
[18] for 3D IC design and manufacturing.

Runtime Stress Estimation for 3D IC Reliability Management 1:5

(a) Temperature (K) distribution. (b) Von Mises thermal stress
(MPa) distribution.

Fig. 4. Temperature and the corresponding Von Mises thermal stress distributions of the bo!om surface of
the 3D IC with uniform TSV distribution in COMSOL, with stress-free temperature set as 300K [8].

leads to large thermal stress. For the second reason, the mismatch in CTE also brings signi!cant
stress increase. The CTE of copper is 17 × 10−6 K−1, which is nearly seven times larger than that of
silicon (2.56 × 10−6 K−1). When temperature increases with the same degree, the copper expansion
will be much more signi!cant than silicon, resulting in considerable stress.

The stress in solid in cartesian coordinate can be expressed as [6]:
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The terms (fx , fy , fz ) are forces in x , y, and z directions, (u,v,w) are displacements in the three
directions, E is the elastic modulus, ν is the Poisson ratio, α is the thermal expansion coe"cient,T
is the temperature, µ and λ are the Lamé coe"cients. From (1), it can be observed that (fx , fy, fz )
changes with temperature T .
As a powerfulmethod for the analysis of thermo-mechanical stress in a complex structure where

experimental investigation is quite di"cult, FEM method can be used to build the 3D IC stress
model based on (1). We have built a two-layer 3D IC model with 12× 12 TSVs uniformly placed in

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.



The dark silicon hazard
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l Not all cores can be on simultaneously anymore.
l Which cores should be on and how much power 

can be consumed for best performance?

4-core with 64 nm

16-core with 32 nm

scaling



Outline

l Leakage Matters:
o Leakage-aware thermal estimation 

(IEEE Trans. on Computers, 2018)
o Leakage-aware thermal management (white-box model)

(ASP-DAC Best Paper Nomination, 2019)
(IEEE Trans. on Industrial Informatics, 2020)

o Leakage-aware thermal management (black-box model)
(IEEE Trans. on CAD of Integrated Circuits and Systems, 2019)

l Many-Core Solutions:
o Hierarchical thermal management 

(ACM Trans. on Design Automation of Electronic Systems, 2016)



Outline

l 3D Integration:
o Runtime stress estimation using ANN

(ACM Trans. on Design Automation of Electronic Systems, 2019)
o STREAM: Stress-aware reliability management

(IEEE Trans. on CAD of Integrated Circuits and Systems, 2018)

l Dark Silicon Hazard:
o GDP: Greedy based dynamic power budgeting 

(IEEE Trans. on Computers 2019)
o Performance optimization of 3-D microprocessors

(IEEE Trans. on Computers 2020)



Leakage Matters
• Leakage-aware thermal estimation 

H. Wang, J. Wan, et al., “A fast leakage-aware full-chip transient thermal 
estimation method”, IEEE Trans. on Computers, 2018

• Leakage-aware thermal management
• White-box model through PWL approximation

X. Guo, H. Wang, et al., “Leakage-aware thermal management for multi-core 
systems using piecewise linear model predictive control”, ASP-DAC Best 
Paper Nomination, 2019
H. Wang, L. Hu, X. Guo et al., “Compact piecewise linear model based 
temperature control of multi-core systems considering leakage power”, IEEE 
Transactions on Industrial Informatics, 2020

• Black-box model using Echo State Network (ESN)
H. Wang, X. Guo, et al., “Leakage-aware predictive thermal management for 
multi-core systems using echo state network”, IEEE Trans. on CAD of 
Integrated Circuits and Systems, 2019



Nonlinear leakage problem in 
thermal estimation 
l Leakage power depends on temperature nonlinearly.

l Difficult to compute temperature
l Initial guess and iteration needed to solve the nonlinear 

thermal model (white-box model)!
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than the linear approximation based methods, this DTM can
only be used for single-core systems instead of multi-core
systems as stated in [19].

The discussions above reveal that it is difficult to design an
accurate leakage-aware DTM method for multi-core systems.
In this work, we resolve this problem by proposing a leakage-
aware DTM using compact piecewise linear (PWL) model
based predictive control. The major contributions of this work
include:

• In order to solve the nonlinear control problem in
leakage-aware thermal management, we propose to use a
PWL thermal model to approximate the original nonlinear
thermal model. With the PWL thermal model, predictive
control is enabled for leakage-aware DTM.

• A unified formulation of the PWL thermal model for
leakage-aware DTM is derived. Specially, a systematic
Taylor expansion point selection scheme is developed
to formulate the PWL thermal model by exploiting the
thermal behavior property of the integrated multi-core
system. The resulted PWL thermal model formulation is
concise and elegant. Therefore, it can be integrated into
the predictive control framework seamlessly.

• To reduce the runtime and memory overheads of DTM,
sampling based model order reduction (MOR) is intro-
duced to reduce the size of the PWL thermal model.
Thanks to the sampling based MOR, the resulted compact
PWL thermal model achieves both high compression rate
and high accuracy.

• We propose the compact PWL thermal model based
predictive control framework by integrating the compact
PWL thermal model into model predictive control (MPC).
Although being a nonlinear control, the compact PWL
thermal model based predictive control still retains the
concise structure of the traditional linear MPC. By using
the new temperature control method, accurate future
power recommendations can be computed for the multi-
core system.

• We have experimentally compared the new DTM method
with traditional DTM using linear thermal model based
MPC. Our numerical results show the new method out-
performs the traditional method in thermal management
quality with lower computing overhead.

II. BACKGROUND

In this section, the leakage power model used in this work
is introduced first. After that, we briefly review DTM using
model predictive control (MPC) and reveal its problem in
leakage power consideration.

A. Modeling of the leakage power

The total power of an integrated multi-core system is
composed of dynamic power pd and leakage power ps (which
is also called static power). The dynamic power depends on
the activity of the chip, and thus can be easily estimated
by performance counter based methods [20]. Unlike dynamic
power, leakage power ps is not directly related to the chip’s
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Fig. 1: Comparison of leakage of a PTM-MG 7 nm FinFET
from HSPICE simulation with leakage computed using 3-order
leakage model (2).

activity. Instead, it depends on the temperature of the chip,
and is expressed as [16], [21], [22]

ps = VddIleak(Tp), (1)

where Tp is a scalar representing the temperature at one place
of the chip,1 Ileak is the leakage current which is nonlinearly
related to temperature.

In this work, we use an n-order polynomial model to
accurately model the nonlinear leakage current Ileak(Tp) as

Ileak(Tp) = αnT
n
p + αn−1T

n−1
p + · · ·+ α0. (2)

In order to see the accuracy of the leakage model given
in (2), Fig. 1 shows an HSPICE simulation result of leakage
using 7 nm PTM-MG FinFET models for high-performance
applications (7 nm PTM-MG HP NMOS and HP PMOS)
provided online at [23], and the leakage computed by the
leakage model (with order 3). From the figure, we can see
that the leakage model (2) has high accuracy for all common
temperatures of multi-core chips.

Finally, the leakage power is accurately modeled by com-
bining equations (1) and (2).

B. Thermal management using model predictive control

In this part, we briefly introduce the MPC based DTM and
reveal its difficulty in handling leakage power. For detailed
introduction of MPC based DTM, please refer to our previous
work [12].

In order to use model predictive control (MPC) in DTM, a
thermal model of the multi-core system should be built first.
For an l-core system with m total thermal nodes, we can get
its thermal model as [4], [12], [16], [18]

GT (t) + C
dT (t)

dt
= BP (T, t),

Y (t) = LT (t),
(3)

where T (t) ∈ Rm is the temperature vector (distinguished
from scaler Tp), representing temperatures at m places of the
chip and package; G ∈ Rm×m and C ∈ Rm×m contain
equivalent thermal resistance and capacitance information,

1T introduced latter in (3) is a vector representing temperatures at
multiple positions.

Very different from dynamic power, the static power ps,
caused by leakage current Ileak as

ps ¼ VddIleak; (1)

is independent of the chip’s activity. Values of static power
are harder to obtain than dynamic power, mainly because
of the special temperature sensitivity caused by leakage cur-
rent. IC leakage current has various components, including
subthreshold current, gate current, reverse-biased junction
leakage current and so on. Among these components, sub-
threshold current Isub and gate leakage current Igate are the
main parts. As a result, we can ignore other parts of leakage
and get the leakage current approximation [19], [24], [25] as

Ileak ¼ Isub þ Igate: (2)

The subthreshold current is modeled in the commonly
accepted MOSFET transistor model BSIM 4 [26] as (also
apply VDS # vT [19])

Isub ¼ KvT
2e

VGS$Vth
hvT 1$ e

$VDS
vT

! "
% KvT

2e
VGS$Vth

hvT ; (3)

where vT ¼ kTp
q is the thermal voltage and Tp is a scalar rep-

resenting temperature at one place,1 K and h are process
related parameters, and Vth is the threshold voltage.

While the subthreshold current is highly related to tem-
perature, the gate current Igate, which results from tunneling
between the gate terminal and the other three terminals,
does not depend on temperature and can be considered as a
technology-dependent constant.

Apparently, the leakage current has a complex relation-
ship with temperature. In this work, we use (1), (2), and (3) to
model the static power considering such relationship. The

parameters of leakage current can be obtained by curve fit-
ting using HSPICE simulation data. In order to see the accu-
racy of the model used, Fig. 1 shows an HSPICE simulation
result of leakage using TSMC 65nm process model and its
curve fitting result using approximate leakage model. From
the figure, we can see that the static power model has high
accuracy for all common temperatures of IC chips.

We can conclude that the static power distribution
depends mainly on the temperature distribution for a cer-
tain chip with constant physical parameters. Since tempera-
ture also depends on power, in order to view the whole
picture, thermal model of IC chip is used to describe tem-
perature’s dependency on power as shown next.

3.2 Thermal Modeling
In order to calculate the full-chip temperature distribution, a
thermal model with the ability to link the power and tem-
perature is needed. To perform thermal analysis for an IC
chip, we usually divide both the chip and its package into
multiple blocks called thermal nodes, with the partition
granularity determined by accuracy requirements. Then we
compute the thermal resistances and capacitances among
these thermal nodes, which model the thermal transport
and power response behaviors.

For example, for a certain chip with n total thermal
nodes, we can generate its thermal model as

GT ðtÞ þ C
dT ðtÞ
dt

¼ BP ðT; tÞ;

Y ðtÞ ¼ LT ðtÞ;
(4)

where T ðtÞ 2 Rn is the temperature vector (distinguished
from Tp, which is a scalar representing temperature at only
one place), representing temperatures at n places of the chip
and package; G 2 Rn(n and C 2 Rn(n contain equivalent
thermal resistance and capacitance information respec-
tively; B 2 Rn(l stores the information of how powers are
injected into the thermal nodes; P ðT; tÞ 2 Rl is the power
vector, which contains power consumptions of l compo-
nents on chip, including both dynamic power vector Pd and
static power vector Ps, i.e., P ðT; tÞ ¼ PsðT; tÞ þ PdðtÞ,
reminding that static power PsðT; tÞ is actually a function of
temperature T ; Y ðtÞ 2 Rm is the output temperature vector,
containing only temperatures of thermal nodes that the user

TABLE 1
Mathematical Notations

p, P total power in scalar form and vector form
pd, Pd dynamic power in scalar form and vector form
ps, Ps static power in scalar form and vector form
Ileak total leakage current
Isub, Igate subthreshold current and gate leakage current
Ilin linearized subthreshold current
vT thermal voltage
Tp, T temperature in scalar form and vector form
Tp0 Taylor expansion temperature point
K, h process related parameters for leakage current
P0, As vector and matrix for linear static power model (9)
G, C, B, L thermal model matrices of the whole system
Y temperature vector with only chip temperatures
Gl new Gmatrix for linearized thermal model
M sampling response matrix used for MOR
Ma newM at new Taylor expansion points
ML sampling response matrix with bothM andMa

U , S, V SVD matrices ofM as in (15)
Ut, St, Vt SVD matrices inside incremental SVD
F ,H, UL, SL temporary matrices inside incremental SVD
Q, R QR factorization matrices inside incremental SVD
Ur the projection matrix in MOR
Ĝl, Ĉ, B̂, L̂ reduced linearized thermal model matrices
T̂ temperature vector in the reduced thermal model

Fig. 1. Comparison of leakage of a TSMC 65 nm process MOSFET from
HSPICE simulation with its curve fitting result using (3). An example of
temperature region division is also shown in the figure, which will be dis-
cussed later.

1. T introduced latter in (4) is a vector representing temperatures at
multiple positions.

WANG ET AL.: A FAST LEAKAGE-AWARE FULL-CHIP TRANSIENT THERMAL ESTIMATION METHOD 619



Piecewise linear based thermal 
estimation
l Build local linear thermal models by Taylor expansion

l Change Taylor expansion points on the fly

previous research, it has been shown that due to the charac-
teristics of today’s semiconductor process, such local linear
approximation of leakage has high accuracy around the
expansion temperature point [11], [19].

4.2 Formulating Local Linear Thermal Model
Since we have linearized the relation of subthreshold cur-
rent and temperature, we can rewrite the static power and
temperature relation in a linear form as

ps ¼ VddIleak

¼ Vdd " ðIlin þ IgateÞ
¼ Vdd " ðIlinðTpÞ þ IconstÞ;

(8)

where IlinðTpÞ represents the terms associated with Tp in (7),
Iconst contains constant terms that are not associated with Tp

in (7) and the gate leakage Igate.
Based on this new static power model, we can rebuild a

linear thermal model to replace (5). In order to do that, we
need to integrate (8) into (4). Please note that (8) is in scalar
form for only one certain thermal nodewhile (4) is in vector/
matrix form including information of all thermal nodes. So
we first rewrite (8) in vector/matrix form by collecting and
accumulating scalars IlinðTpÞ and Iconst at multiple positions
of the chip into vectors, then change the current variables to
power bymultiplying voltage Vdd. Rewriting from (8), the lin-
earized static power representation in vector/matrix form is

Ps ¼ P0 þAsT; (9)

where P0 2 Rl is a known vector, with each element formed
by terms not associated with Tp in (8) at each position of the
chip. As 2 Rl"n is a known rectangular diagonal matrix (the
left l" l block matrix is diagonal representing thermal
nodes on the chip, and the right l" ðn& lÞ block matrix is
all zeros representing the thermal nodes of package), with
each diagonal element formed by the coefficient associated
with Tp in (8) at each position of the chip.

Integrating (9) into (4), and let Gl ¼ G&BAs, we have

GlT ðtÞ þ C
dT ðtÞ
dt

¼ BðPdðtÞ þ P0Þ;

Y ðtÞ ¼ LT ðtÞ:
(10)

Now, we have successfully obtained a linear thermal model
considering static power and eliminated the nonlinear rela-
tionship of static power and temperature. Then, we can dis-
crete this model using backward Euler’s method, resulting
in its transient estimation form similar to (5) as

C

h
þGl

! "
T ðtþ hÞ ¼ C

h
T ðtÞ þBðPdðtþ hÞ þ P0Þ;

Y ðtþ hÞ ¼ LT ðtþ hÞ:
(11)

Obviously, simulating the locally linearized leakage-aware
thermalmodel is as straightforward as in (5) by viewing “Gl”
as the new “G” matrix, and “PdðtÞ þ P0” as the new “P ðT; tÞ”
vector.

4.3 Selecting the Proper Expansion Points
Although the new linear thermal model can be generated as
shown before, the Taylor expansion temperature points still

need to be determined since the linear thermal model accu-
racy depends on them, and P0 and As in (9) are formulated
by the expansion point information. Now, we discuss how
to choose proper values of Tp0 for thermal nodes on the chip.

As shown in Section 4.1, as a property of Taylor expansion
approximation, linear approximation (7) (also the equivalent
(9) and (10)) is accurate if the actual temperature Tp (or T in
vector form) is close enough to Tp0 . As a result, in order to
ensure the approximation accuracy, wewant each expansion
point Tp0 to be close to the actual temperature Tp in transient
thermal estimation. This means that the straightforward
choice of an expansion point is Tp0 ¼ Tp. However, such
strategy requires updating Tp0 at each time step, leading to
long computing time because many LU decompositions
have to be performed. To see this problem clearly, please
note that we need to perform LU decomposition of
ðCh þG&BAsÞ in the transient thermal estimation process in
(11), and matrix As depends on the Taylor expansion points
Tp0 . If we update the expansion points for every estimation
time step, LU decomposition also has to be re-performed for
every time step, causing serious computing cost problem.

In order to balance the accuracy and computing cost, we
need to propose a flexible strategy to update the Taylor
expansion point Tp0 . By observing Fig. 1, we notice that at
positions where the nonlinearity of Isub is relatively weak,
o½ðTp & Tp0Þ

2( can be small even if Tp0 is far from Tp. Inspired
by this, we propose a strategy to determine Taylor expan-
sion points in transient analysis: for each temperature, we
set a temperature region with a certain length, as shown in
Fig. 1. Assume Tp0 is taken as the Taylor expansion point for
a thermal node, such expansion point Tp0 will be used when
the node temperature Tp is within the temperature region of
Tp0 (in Fig. 1, it is the region with 10)C length as example).
We may update the expansion point only when the node
temperature Tp is out of the temperature region of Tp0 . The
temperature region lengths are determined off-line accord-
ing to the nonlinear temperature-leakage curve of a specific
fabrication process to balance the estimation accuracy and
speed. In general, shorter temperature region leads to better
accuracy but slower speed for estimation, as shown later in
experiments (Section 5.4). In addition, the region can be
shorter for temperature point with stronger nonlinearity,
and vice versa. For the temperature-leakage curve shown in
Fig. 1, the strengths of the nonlinearity are quite similar for
the whole temperature range, so we simply use the same
region length for all temperatures.

It is also noticed that Tp is an unknown variable. Thus,
we need some available information to replace Tp, in order
to determine the correct temperature regions and the corre-
sponding Taylor expansion points. In this work, we employ
the on-chip physical thermal sensors to achieve such pur-
pose. Since there are only limited number of thermal sen-
sors and we also do not want to change the linearized
model (10) (As and P0) for temperature region change at sin-
gle or very few positions, we use the thermal sensor read-
ings to test our estimation error in real-time and determine
whether we should change the linearized model or not.
Assume there are k thermal sensors with readings at current
time as Tsen1 , Tsen2 ; . . . ; Tsenk , and the corresponding esti-
mated temperature values by (10) at thermal sensor posi-
tions are Test1 , Test2 ; . . . ; Testk . Then the maximum estimation
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previous research, it has been shown that due to the charac-
teristics of today’s semiconductor process, such local linear
approximation of leakage has high accuracy around the
expansion temperature point [11], [19].

4.2 Formulating Local Linear Thermal Model
Since we have linearized the relation of subthreshold cur-
rent and temperature, we can rewrite the static power and
temperature relation in a linear form as

ps ¼ VddIleak

¼ Vdd " ðIlin þ IgateÞ
¼ Vdd " ðIlinðTpÞ þ IconstÞ;

(8)

where IlinðTpÞ represents the terms associated with Tp in (7),
Iconst contains constant terms that are not associated with Tp

in (7) and the gate leakage Igate.
Based on this new static power model, we can rebuild a

linear thermal model to replace (5). In order to do that, we
need to integrate (8) into (4). Please note that (8) is in scalar
form for only one certain thermal nodewhile (4) is in vector/
matrix form including information of all thermal nodes. So
we first rewrite (8) in vector/matrix form by collecting and
accumulating scalars IlinðTpÞ and Iconst at multiple positions
of the chip into vectors, then change the current variables to
power bymultiplying voltage Vdd. Rewriting from (8), the lin-
earized static power representation in vector/matrix form is

Ps ¼ P0 þAsT; (9)

where P0 2 Rl is a known vector, with each element formed
by terms not associated with Tp in (8) at each position of the
chip. As 2 Rl"n is a known rectangular diagonal matrix (the
left l" l block matrix is diagonal representing thermal
nodes on the chip, and the right l" ðn& lÞ block matrix is
all zeros representing the thermal nodes of package), with
each diagonal element formed by the coefficient associated
with Tp in (8) at each position of the chip.

Integrating (9) into (4), and let Gl ¼ G&BAs, we have

GlT ðtÞ þ C
dT ðtÞ
dt

¼ BðPdðtÞ þ P0Þ;

Y ðtÞ ¼ LT ðtÞ:
(10)

Now, we have successfully obtained a linear thermal model
considering static power and eliminated the nonlinear rela-
tionship of static power and temperature. Then, we can dis-
crete this model using backward Euler’s method, resulting
in its transient estimation form similar to (5) as

C

h
þGl

! "
T ðtþ hÞ ¼ C

h
T ðtÞ þBðPdðtþ hÞ þ P0Þ;

Y ðtþ hÞ ¼ LT ðtþ hÞ:
(11)

Obviously, simulating the locally linearized leakage-aware
thermalmodel is as straightforward as in (5) by viewing “Gl”
as the new “G” matrix, and “PdðtÞ þ P0” as the new “P ðT; tÞ”
vector.

4.3 Selecting the Proper Expansion Points
Although the new linear thermal model can be generated as
shown before, the Taylor expansion temperature points still

need to be determined since the linear thermal model accu-
racy depends on them, and P0 and As in (9) are formulated
by the expansion point information. Now, we discuss how
to choose proper values of Tp0 for thermal nodes on the chip.

As shown in Section 4.1, as a property of Taylor expansion
approximation, linear approximation (7) (also the equivalent
(9) and (10)) is accurate if the actual temperature Tp (or T in
vector form) is close enough to Tp0 . As a result, in order to
ensure the approximation accuracy, wewant each expansion
point Tp0 to be close to the actual temperature Tp in transient
thermal estimation. This means that the straightforward
choice of an expansion point is Tp0 ¼ Tp. However, such
strategy requires updating Tp0 at each time step, leading to
long computing time because many LU decompositions
have to be performed. To see this problem clearly, please
note that we need to perform LU decomposition of
ðCh þG&BAsÞ in the transient thermal estimation process in
(11), and matrix As depends on the Taylor expansion points
Tp0 . If we update the expansion points for every estimation
time step, LU decomposition also has to be re-performed for
every time step, causing serious computing cost problem.

In order to balance the accuracy and computing cost, we
need to propose a flexible strategy to update the Taylor
expansion point Tp0 . By observing Fig. 1, we notice that at
positions where the nonlinearity of Isub is relatively weak,
o½ðTp & Tp0Þ

2( can be small even if Tp0 is far from Tp. Inspired
by this, we propose a strategy to determine Taylor expan-
sion points in transient analysis: for each temperature, we
set a temperature region with a certain length, as shown in
Fig. 1. Assume Tp0 is taken as the Taylor expansion point for
a thermal node, such expansion point Tp0 will be used when
the node temperature Tp is within the temperature region of
Tp0 (in Fig. 1, it is the region with 10)C length as example).
We may update the expansion point only when the node
temperature Tp is out of the temperature region of Tp0 . The
temperature region lengths are determined off-line accord-
ing to the nonlinear temperature-leakage curve of a specific
fabrication process to balance the estimation accuracy and
speed. In general, shorter temperature region leads to better
accuracy but slower speed for estimation, as shown later in
experiments (Section 5.4). In addition, the region can be
shorter for temperature point with stronger nonlinearity,
and vice versa. For the temperature-leakage curve shown in
Fig. 1, the strengths of the nonlinearity are quite similar for
the whole temperature range, so we simply use the same
region length for all temperatures.

It is also noticed that Tp is an unknown variable. Thus,
we need some available information to replace Tp, in order
to determine the correct temperature regions and the corre-
sponding Taylor expansion points. In this work, we employ
the on-chip physical thermal sensors to achieve such pur-
pose. Since there are only limited number of thermal sen-
sors and we also do not want to change the linearized
model (10) (As and P0) for temperature region change at sin-
gle or very few positions, we use the thermal sensor read-
ings to test our estimation error in real-time and determine
whether we should change the linearized model or not.
Assume there are k thermal sensors with readings at current
time as Tsen1 , Tsen2 ; . . . ; Tsenk , and the corresponding esti-
mated temperature values by (10) at thermal sensor posi-
tions are Test1 , Test2 ; . . . ; Testk . Then the maximum estimation
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previous research, it has been shown that due to the charac-
teristics of today’s semiconductor process, such local linear
approximation of leakage has high accuracy around the
expansion temperature point [11], [19].

4.2 Formulating Local Linear Thermal Model
Since we have linearized the relation of subthreshold cur-
rent and temperature, we can rewrite the static power and
temperature relation in a linear form as

ps ¼ VddIleak

¼ Vdd " ðIlin þ IgateÞ
¼ Vdd " ðIlinðTpÞ þ IconstÞ;

(8)

where IlinðTpÞ represents the terms associated with Tp in (7),
Iconst contains constant terms that are not associated with Tp

in (7) and the gate leakage Igate.
Based on this new static power model, we can rebuild a

linear thermal model to replace (5). In order to do that, we
need to integrate (8) into (4). Please note that (8) is in scalar
form for only one certain thermal nodewhile (4) is in vector/
matrix form including information of all thermal nodes. So
we first rewrite (8) in vector/matrix form by collecting and
accumulating scalars IlinðTpÞ and Iconst at multiple positions
of the chip into vectors, then change the current variables to
power bymultiplying voltage Vdd. Rewriting from (8), the lin-
earized static power representation in vector/matrix form is

Ps ¼ P0 þAsT; (9)

where P0 2 Rl is a known vector, with each element formed
by terms not associated with Tp in (8) at each position of the
chip. As 2 Rl"n is a known rectangular diagonal matrix (the
left l" l block matrix is diagonal representing thermal
nodes on the chip, and the right l" ðn& lÞ block matrix is
all zeros representing the thermal nodes of package), with
each diagonal element formed by the coefficient associated
with Tp in (8) at each position of the chip.

Integrating (9) into (4), and let Gl ¼ G&BAs, we have

GlT ðtÞ þ C
dT ðtÞ
dt

¼ BðPdðtÞ þ P0Þ;

Y ðtÞ ¼ LT ðtÞ:
(10)

Now, we have successfully obtained a linear thermal model
considering static power and eliminated the nonlinear rela-
tionship of static power and temperature. Then, we can dis-
crete this model using backward Euler’s method, resulting
in its transient estimation form similar to (5) as

C

h
þGl

! "
T ðtþ hÞ ¼ C

h
T ðtÞ þBðPdðtþ hÞ þ P0Þ;

Y ðtþ hÞ ¼ LT ðtþ hÞ:
(11)

Obviously, simulating the locally linearized leakage-aware
thermalmodel is as straightforward as in (5) by viewing “Gl”
as the new “G” matrix, and “PdðtÞ þ P0” as the new “P ðT; tÞ”
vector.

4.3 Selecting the Proper Expansion Points
Although the new linear thermal model can be generated as
shown before, the Taylor expansion temperature points still

need to be determined since the linear thermal model accu-
racy depends on them, and P0 and As in (9) are formulated
by the expansion point information. Now, we discuss how
to choose proper values of Tp0 for thermal nodes on the chip.

As shown in Section 4.1, as a property of Taylor expansion
approximation, linear approximation (7) (also the equivalent
(9) and (10)) is accurate if the actual temperature Tp (or T in
vector form) is close enough to Tp0 . As a result, in order to
ensure the approximation accuracy, wewant each expansion
point Tp0 to be close to the actual temperature Tp in transient
thermal estimation. This means that the straightforward
choice of an expansion point is Tp0 ¼ Tp. However, such
strategy requires updating Tp0 at each time step, leading to
long computing time because many LU decompositions
have to be performed. To see this problem clearly, please
note that we need to perform LU decomposition of
ðCh þG&BAsÞ in the transient thermal estimation process in
(11), and matrix As depends on the Taylor expansion points
Tp0 . If we update the expansion points for every estimation
time step, LU decomposition also has to be re-performed for
every time step, causing serious computing cost problem.

In order to balance the accuracy and computing cost, we
need to propose a flexible strategy to update the Taylor
expansion point Tp0 . By observing Fig. 1, we notice that at
positions where the nonlinearity of Isub is relatively weak,
o½ðTp & Tp0Þ

2( can be small even if Tp0 is far from Tp. Inspired
by this, we propose a strategy to determine Taylor expan-
sion points in transient analysis: for each temperature, we
set a temperature region with a certain length, as shown in
Fig. 1. Assume Tp0 is taken as the Taylor expansion point for
a thermal node, such expansion point Tp0 will be used when
the node temperature Tp is within the temperature region of
Tp0 (in Fig. 1, it is the region with 10)C length as example).
We may update the expansion point only when the node
temperature Tp is out of the temperature region of Tp0 . The
temperature region lengths are determined off-line accord-
ing to the nonlinear temperature-leakage curve of a specific
fabrication process to balance the estimation accuracy and
speed. In general, shorter temperature region leads to better
accuracy but slower speed for estimation, as shown later in
experiments (Section 5.4). In addition, the region can be
shorter for temperature point with stronger nonlinearity,
and vice versa. For the temperature-leakage curve shown in
Fig. 1, the strengths of the nonlinearity are quite similar for
the whole temperature range, so we simply use the same
region length for all temperatures.

It is also noticed that Tp is an unknown variable. Thus,
we need some available information to replace Tp, in order
to determine the correct temperature regions and the corre-
sponding Taylor expansion points. In this work, we employ
the on-chip physical thermal sensors to achieve such pur-
pose. Since there are only limited number of thermal sen-
sors and we also do not want to change the linearized
model (10) (As and P0) for temperature region change at sin-
gle or very few positions, we use the thermal sensor read-
ings to test our estimation error in real-time and determine
whether we should change the linearized model or not.
Assume there are k thermal sensors with readings at current
time as Tsen1 , Tsen2 ; . . . ; Tsenk , and the corresponding esti-
mated temperature values by (10) at thermal sensor posi-
tions are Test1 , Test2 ; . . . ; Testk . Then the maximum estimation
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Here R = r INc l×Nc l is tuning matrix with r as the tuning param-

eter. The regulation term PT
d
RPd is added to the cost function in

(8) because we prefer power distribution not to change drastically
for practical consideration [1, 16].

Next, optimization is performed to !nd thePd whichminimizes
(8). However, because there is an integral with the nonlinear Ps
in thermal model (4), we cannot express Y using Pd as the vari-
able. Therefore, the optimization problem (8) cannot be solved to
!nd the future power recommendation, meaning predictive con-
trol cannot be directly used for the leakage-aware thermal man-
agement.

3 LEAKAGE-AWARE DTM USING PIECEWISE
LINEAR MODEL BASED PREDICTIVE
CONTROL

In this section, we present the new leakage-aware DTM method
using PWL model based predictive control.

3.1 Building local linear thermal model using
Taylor expansion

Before presenting the PWL methods, we !rst show the formula-
tion of the local linear thermal model (at a Taylor expansion point)
which will be used in PWL approximation.

First, we can get a local linear leakage power model by perform-
ing Taylor expansion on the original nonlinear model (1), (2), ex-
pressed in matrix-vector form as

Ps = P̂ + ĤT , (9)

where P̂ ∈ Rl is a constant vector not associated with temperature

T . Ĥ ∈ Rl×m is a constant rectangular diagonal matrix. Due to the
page limitation, please refer to [15] for the detailed derivation.

Then, by integrating (9) into (3) and letting Ĝ = G − BĤ , we
obtain a local linear thermal model as

ĜT (t) +C
dT (t)

dt
= B(Pd (t) + P̂),

Y (t) = LT (t).
(10)

Similar to (4), the local linear thermal model (10) can be dis-
cretized into the following form butwithout the integral term in (4):

T (t + h) = Â(h)T (t) + D̂(h)Pd + D̂(h)P̂, (11)

where

Â(h) = e−hC
−1Ĝ
, D̂(h) =

∫ h

0
e−(h−τ )C

−1ĜC−1B dτ .

3.2 PWL thermal model formulation
In this part, we formulate the PWL thermal model using the lo-
cal linear thermal model presented in Section 3.1. The PWL ther-
mal model can then be integrated into the predictive control frame-
work for leakage-aware DTM.

3.2.1 Taylor expansion thermal points selection scheme for leakage-
aware DTM. Although there is PWL approximation based leakage-
aware thermal estimation method [15], it is not straightforward to
apply similar PWL approximation to DTM due to the di"culty in
Taylor expansion thermal points selection. In thermal estimation

Figure 2: The sketchmap of the PWLmethod for one control
step. T1,T2, . . . ,Tn are the potential Taylor expansion points.
t, t +h1, . . . , t +hn are the potential local linear model switch-
ing time points. The black solid line is the extreme temper-
ature trajectory. The red dashed line is a common tempera-
ture trajectory. The blue dot line represents the temperature
trajectory which is already very close to the target at time t .

problem, the Taylor expansion point can be easily chosen by us-
ing the self-estimated temperature or the on-chip thermal sensor
temperature [15]. However, DTM will not know the proper Taylor
expansion points directly, because its computing target is the fu-
ture power recommendation, not the temperature. The only things
that DTM knows are the current temperature, the target temper-
ature, and also the fact that the temperature prediction trajectory
(excited by the unknown future power recommendation to be com-
puted) should be between the two temperatures. In this work, we
propose a novel Taylor expansion points selection scheme as the
following.

First, we de!ne two thermalmanagement cases called rising case
and falling case, depending on the current temperature of the core.
We have the falling case if the current temperature is higher than
the target temperature. DTM should lower the core temperature to
target temperature for reliability in this case. Otherwise, we have
the rising case for performance. Here we use the rising case as
illustration example. Please note that DTM for the falling case can
be performed in the same way.

Let us denoteT0 as the lowest temperature andTn as the target
temperature of the chip.3 The operating temperature of rising case
lies betweenT0 andTn . We introduce n potential expansion points
in the operating temperature range: {T1,T2, . . . ,Tn }.

4 For simplic-
ity, assume all the potential expansion points are uniformly placed

in the operating temperature range, i.e.,Ti −Ti−1 =
Tn−T0

n for any
integer i ∈ [1,n], as shown in Fig. 2.

Next, corresponding to the Taylor expansion points, we also
need to determine the potential local model switching time points
{t, t + h1, . . . , t + hn } within one control step. The extreme tem-
perature trajectory in the rising case, which starts from T (t) = T0
and ends at T (t + hn ) = Tn is used to determine these time points.
As shown in Fig. 2, the extreme temperature trajectory is the solid

3Usually, the lowest temperature is set to be the same or slightly higher than the
ambient temperature.
4Please note that T0 is not a potential Taylor expansion point.
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l Using recurrent neural network (RNN)
l Nonlinear model specially for dynamic system modeling
l Training using back propagation through time (BPTT)
l First try failed! Due to exploding gradient in training
l Large error using RNN

First try (failed): RNN based model

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2915316, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XX XXXX 4

reminding that leakage power Ps(Tt, t) is actually a function
of temperature Tt modeled using equations (1), (2), and (3);
Y (t) ∈ Rn is the output temperature vector of n cores;
L ∈ Rn×m is the corresponding output selection matrix which
selects the n core temperatures from Tt(t). For the detailed
structure of the thermal model, please refer to [45], [60].

The leakage power Ps(Tt, t + h) is a nonlinear function
of current temperature Tt(t + h), leading to the fact that we
need Tt(t+ h) to compute Ps(Tt, t+ h) while we also need
Ps(Tt, t + h) to compute Tt(t + h), similar to the famous
chicken or the egg causality dilemma. As a result, Tt(t + h)
cannot be calculated directly.

Iteration based method has been proposed to compute
the temperature and leakage power by providing an initial
guess [61], [62], [34]. Although this method is pretty ac-
curate, it cannot be used in DTM because it is extremely
time consuming. In this work, we use the iteration based
thermal estimation method as the accuracy golden baseline
(called ”golden” in short) and it also serves as the multi-core
system plant. Detailed steps of the iteration based method are
discussed in our previous work [34].

In order to find a practical leakage-aware thermal model
for DTM, researchers proposed to approximate the nonlinear
function (3) using linear function, piecewise linear function,
or simple polynomials. But all these methods show limitations
in DTM as discussed in Section II.

IV. LEAKAGE-AWARE DTM USING ECHO STATE NETWORK

BASED PREDICTIVE CONTROL

As discussed in the previous sections, there are very few
leakage-aware DTM works for multi-core systems. In this
section, we present a new leakage-aware DTM method using
a neural network based nonlinear thermal model and nonlinear
model predictive control.

This section is organized as follows. First, in Section IV-A,
we analyze the performance of the general RNN structure
based thermal model, and point out it does not work well
for leakage-aware DTM because of the exploding gradient
induced long-term dependencies problem. Then, in order to
avoid such problem, we propose to use ESN model, which is
an RNN with special structure, for leakage-aware DTM. The
structure and training of ESN for thermal management appli-
cation are presented in Section IV-B. Finally, in Section IV-C,
we demonstrate the detailed steps of integrating the ESN based
thermal model into the new nonlinear ESN MPC framework
to perform leakage-aware DTM.

A. Leakage-aware thermal modeling using RNN and its long-
term dependencies problem

1) RNN based leakage-aware thermal model: RNN is a
deep network specialized in sequence modeling. It is invented
to deal with data in vector sequence form by the machine
learning community [50]. Because dynamic systems produce
the output vector sequence from a given input vector sequence,
RNN can also be used as a black box model for dynamic
systems, especially for nonlinear dynamic systems [63]. In
addition, RNN has a simple structure, which makes it easier
to be integrated into an advanced control framework than some
other complex neural networks.

Fig. 2: A simple RNN architecture, whose recurrence is the
feedback connection from the output to the hidden layer. It
has the problem of learning long-term dependencies when it
is used as the thermal model for leakage-aware DTM.

In order to improve DTM quality of multi-core systems by
accurately considering the nonlinearity between the leakage
current and temperature, it is natural to think of using RNN as
the leakage-aware thermal model. Although RNN is powerful
in many applications, we show in this work that it is difficult
to train the normal RNN for leakage-aware DTM problem
because of its problem of learning long-term dependencies in
the training process [64], [50]. With the problem of learning
long-term dependencies, the accuracy of the RNN model will
suffer, especially for an RNN that requires a long sequence to
train as in leakage-aware DTM.

Here we use a simple RNN shown in Fig. 2 as an example
to demonstrate this problem. Because RNN can naturally con-
sider the nonlinearity between leakage power and temperature,
we just need dynamic power Pd(k) as the input and leakage
power Ps(k) should be handled automatically inside RNN.
Tr(k) is the output temperature of RNN, containing the on-
chip temperatures only.2 xr(k) is the state, which is also called
the hidden unit. In addition, there are matrices Ar, Dr and
Er, representing the weighted connections between input-to-
hidden, output-to-hidden and hidden-to-output, respectively,
which are called weight matrices. This RNN outputs the on-
chip temperatures Tr(k) at each time step, and has recurrent
connections from the output at one time step to the hidden
units at the next time step. Please note that we can put more
than one hidden unit at each time step, in order to increase
the model capacity.

Assume the multi-core system has n cores (Tr(k) ∈ Rn),
n power sources (Pd(k) ∈ Rn), and there are q hidden units
(xr(k) ∈ Rq) used at each time step, then this simple RNN
architecture can be written as

xr(k) = f(ArPd(k) +DrTr(k − 1) + α),

Tr(k) = Erxr(k) + β,
(5)

where Ar ∈ Rq×n is specifically called input weight matrix,
Dr ∈ Rq×n is called recurrent weight matrix, and Er ∈ Rn×q

is called output weight matrix. The activation function f is
an element wise nonlinear function. Usually, f is chosen as

logistic sigmoid function f(k) = ek

ek+1 or hyperbolic tangent

2We do not need the explicit package temperatures in most applications. If
certain package temperatures are explicitly needed, we can simply add them
to Tr(k).
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reminding that leakage power Ps(Tt, t) is actually a function
of temperature Tt modeled using equations (1), (2), and (3);
Y (t) ∈ Rn is the output temperature vector of n cores;
L ∈ Rn×m is the corresponding output selection matrix which
selects the n core temperatures from Tt(t). For the detailed
structure of the thermal model, please refer to [45], [60].

The leakage power Ps(Tt, t + h) is a nonlinear function
of current temperature Tt(t + h), leading to the fact that we
need Tt(t+ h) to compute Ps(Tt, t+ h) while we also need
Ps(Tt, t + h) to compute Tt(t + h), similar to the famous
chicken or the egg causality dilemma. As a result, Tt(t + h)
cannot be calculated directly.

Iteration based method has been proposed to compute
the temperature and leakage power by providing an initial
guess [61], [62], [34]. Although this method is pretty ac-
curate, it cannot be used in DTM because it is extremely
time consuming. In this work, we use the iteration based
thermal estimation method as the accuracy golden baseline
(called ”golden” in short) and it also serves as the multi-core
system plant. Detailed steps of the iteration based method are
discussed in our previous work [34].

In order to find a practical leakage-aware thermal model
for DTM, researchers proposed to approximate the nonlinear
function (3) using linear function, piecewise linear function,
or simple polynomials. But all these methods show limitations
in DTM as discussed in Section II.

IV. LEAKAGE-AWARE DTM USING ECHO STATE NETWORK

BASED PREDICTIVE CONTROL

As discussed in the previous sections, there are very few
leakage-aware DTM works for multi-core systems. In this
section, we present a new leakage-aware DTM method using
a neural network based nonlinear thermal model and nonlinear
model predictive control.

This section is organized as follows. First, in Section IV-A,
we analyze the performance of the general RNN structure
based thermal model, and point out it does not work well
for leakage-aware DTM because of the exploding gradient
induced long-term dependencies problem. Then, in order to
avoid such problem, we propose to use ESN model, which is
an RNN with special structure, for leakage-aware DTM. The
structure and training of ESN for thermal management appli-
cation are presented in Section IV-B. Finally, in Section IV-C,
we demonstrate the detailed steps of integrating the ESN based
thermal model into the new nonlinear ESN MPC framework
to perform leakage-aware DTM.

A. Leakage-aware thermal modeling using RNN and its long-
term dependencies problem

1) RNN based leakage-aware thermal model: RNN is a
deep network specialized in sequence modeling. It is invented
to deal with data in vector sequence form by the machine
learning community [50]. Because dynamic systems produce
the output vector sequence from a given input vector sequence,
RNN can also be used as a black box model for dynamic
systems, especially for nonlinear dynamic systems [63]. In
addition, RNN has a simple structure, which makes it easier
to be integrated into an advanced control framework than some
other complex neural networks.

Fig. 2: A simple RNN architecture, whose recurrence is the
feedback connection from the output to the hidden layer. It
has the problem of learning long-term dependencies when it
is used as the thermal model for leakage-aware DTM.

In order to improve DTM quality of multi-core systems by
accurately considering the nonlinearity between the leakage
current and temperature, it is natural to think of using RNN as
the leakage-aware thermal model. Although RNN is powerful
in many applications, we show in this work that it is difficult
to train the normal RNN for leakage-aware DTM problem
because of its problem of learning long-term dependencies in
the training process [64], [50]. With the problem of learning
long-term dependencies, the accuracy of the RNN model will
suffer, especially for an RNN that requires a long sequence to
train as in leakage-aware DTM.

Here we use a simple RNN shown in Fig. 2 as an example
to demonstrate this problem. Because RNN can naturally con-
sider the nonlinearity between leakage power and temperature,
we just need dynamic power Pd(k) as the input and leakage
power Ps(k) should be handled automatically inside RNN.
Tr(k) is the output temperature of RNN, containing the on-
chip temperatures only.2 xr(k) is the state, which is also called
the hidden unit. In addition, there are matrices Ar, Dr and
Er, representing the weighted connections between input-to-
hidden, output-to-hidden and hidden-to-output, respectively,
which are called weight matrices. This RNN outputs the on-
chip temperatures Tr(k) at each time step, and has recurrent
connections from the output at one time step to the hidden
units at the next time step. Please note that we can put more
than one hidden unit at each time step, in order to increase
the model capacity.

Assume the multi-core system has n cores (Tr(k) ∈ Rn),
n power sources (Pd(k) ∈ Rn), and there are q hidden units
(xr(k) ∈ Rq) used at each time step, then this simple RNN
architecture can be written as

xr(k) = f(ArPd(k) +DrTr(k − 1) + α),

Tr(k) = Erxr(k) + β,
(5)

where Ar ∈ Rq×n is specifically called input weight matrix,
Dr ∈ Rq×n is called recurrent weight matrix, and Er ∈ Rn×q

is called output weight matrix. The activation function f is
an element wise nonlinear function. Usually, f is chosen as

logistic sigmoid function f(k) = ek

ek+1 or hyperbolic tangent

2We do not need the explicit package temperatures in most applications. If
certain package temperatures are explicitly needed, we can simply add them
to Tr(k).
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function f(k) = tanh(k) in RNN. α ∈ Rq and β ∈ Rn are
the bias vectors.

2) Long-term dependencies problem in RNN based leakage-
aware thermal model: The RNN model has to be trained
before usage, i.e., the proper values of its weight matrices
(Ar, Dr, Er), which lead to an accurate RNN for the specific
application, need to be determined in the training process.
Assume we have a training set comprises input (dynamic
power vector trace) and output (system temperature vector
trace) samples of nk time steps obtained using the slow
but accurate golden iteration based leakage-aware thermal
estimation method [61], [62]. Let us denote Ttr(k) as the
output temperature from training samples and Tr(k) as the
output temperature from RNN model at time k. In order to
get an accurate RNN model, we need to make the output
temperature Tr(k) of RNN as close as possible to the training
temperature data Ttr(k), by tuning the RNN weight matrices.
As a result, the goal of the training process is to minimize the
following cost function

J =
∑

1≤k≤nk

‖Ttr(k)− Tr(k)‖2. (6)

To minimize the cost function J , our task is to search for the
weight matrices (Ar, Dr, Er) which reduce the cost function
gradient ∇J to zero in an iterative way. However, long-term
dependencies problem may occur during the gradients compu-
tation process, leading to RNN model accuracy degradation,
as explained in the following.

Here, we illustrate such long-term dependencies problem by
computing the derivative of the cost ψ(k) := Ttr(k)−Tr(k) ∈
Rn at time k in equation (6) with respect to a weight wij in
the weight matrices as an example:

∂ψ (k)

∂wij
=

∑

1≤l≤k

(

∂ψ (k)

∂xr (k)

∂xr (k)

∂Tr (l)

∂T+
r (l)

∂wij

)

, (7)

where
∂ψ (k)

∂xr (k)

∂xr (k)

∂Tr (l)

∂T+
r (l)

∂wij
measures how wij at time l

affects the ψ(k) at time k,
∂T+

r (l)

∂wij
is the “immediate” partial

derivative by taking Tr(l − 1) as a constant, and

∂xr (k)

∂Tr (l)
=

∂xr (k)

∂Tr (k − 1)





∏

l+2≤i≤k

∂Tr (i− 1)

∂xr (i− 1)

∂xr (i− 1)

∂Tr (i− 2)





=





∏

l+2≤i≤k

diag(f ′(zr(i)))DrEr





· diag(f ′(zr(l + 1)))Dr,
(8)

where zr(i) is defined as zr(i) = ArPd(i) +DrTr(i − 1) +
α only to simplify notation and diag is an operator which
converts a vector into a diagonal matrix.

The problem of learning long-term dependencies can be
induced by either vanishing gradient or exploding gradient.
In order to analyze the long-term dependencies problem and
distinguish its cause, we mainly focus on the multiplication
∏

l+2≤i≤k diag(f
′(zr(i)))DrEr in equation (8). Let us define

κi = ‖diag(f ′(zr(i)))DrEr‖2, which is also the largest
singular value of diag(f ′(zr(i)))DrEr. Then, if κi < 1
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Fig. 3: The largest singular value κi of diag(f ′(zr(i)))DrEr,
showing exploding gradient problem because κi > 1. This
RNN model has three hidden layers with 10 neurons in each
layer. All other RNN models show similar results.

TABLE I: The absolute training and validation errors (in ◦C)
of normal RNN based leakage-aware thermal model. Errors
are large for all RNNs with different configurations, due to the
exploding gradient induced long-term dependencies problem.

Neuron # in layer Train err Val err
l1 l2 l3 l4 max avg max avg

10 0 0 0 49.2 22.4 65.2 42.6
20 0 0 0 37.5 15.7 43.4 21.3
5 5 0 0 23.2 10.9 30.5 13.1
10 10 0 0 20.6 9.0 22.7 10.3
20 20 0 0 18.3 7.4 19.4 8.6
5 5 5 0 19.5 7.9 20.2 9.5
10 10 10 0 17.5 7.2 18.2 8.1
15 15 15 0 17.3 6.7 19.3 8.7
20 20 20 0 17.5 6.5 19.7 9.3
5 5 5 5 17.9 7.4 19.5 8.5
10 10 10 10 17.1 6.4 20.4 9.7

and k % l, the value of ‖
∏

l+2≤i≤k diag(f
′(zr(i)))DrEr‖2

will go to 0, indicating the vanishing gradient induced long-
term dependencies problem. Similarly, the exploding gradient
induced long-term dependencies problem may happen when
κi > 1 and k % l. More discussions on the difficulty of
learning long-term dependencies can be found in [65], [66],
[64], [50].

When encountering exploding gradient or vanishing gradi-
ent problems, it is difficult for RNN to learn the weights in
the training process, which will lead to a large model error.
Unfortunately, in the leakage-aware thermal modeling, there
is a severe exploding gradient problem. We can see this by
observing the value of κi shown in Fig. 3 for one RNN
example where there are three hidden layers with 10 neurons
in each layer. In the figure, κi is larger than 1 for all training
time k, indicating exploding gradient problem in this case.
We remark that similar results are observed in all other tested
RNN models with different sizes and configurations.

To see the disastrous results of this exploding gradient
induced long-term dependencies problem, we built leakage-
aware RNN thermal models with different sizes and hidden
layer configurations using 10000 samples obtained from the
golden iteration based method with sampling interval to be
1 s. Then, we use other 7000 samples to verify the accuracy
of this model. The training and validation accuracy results are
collected in Table I. Results shown in the table reveal that no
matter how we adjust the model sizes and hidden layer con-

Singular value > 1: exploding gradient



l Echo State Network (ESN) is a special RNN
l Fixing the recurrent weights in hidden units
l Only train the input and output weights
l Training does not propagate through time (vs. BPTT)
l Good accuracy in leakage-aware thermal modeling

ESN to avoid exploding gradient
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figurations, RNN models have relatively large training error
and validation error. Even the smallest average training and
validation errors are larger than 6 ◦C and 8 ◦C, respectively.
This means that normal RNN model is not suitable for building
leakage-aware thermal model due to the exploding gradient in-
duced long-term dependencies problem in the training process.
In the next part, we will show this problem can be solved by
using echo state network (ESN), which has a special RNN
structure.

B. ESN based leakage-aware thermal model for multi-core
systems

From Section IV-A2, we know that normal RNN has diffi-
culty in learning long-term dependencies to build an accurate
leakage-aware thermal model for DTM due to the exploding
gradient problem in training process. In this section, we show
that echo state network (ESN) [67], [49], [68], which is an
RNN with special structure, is able to avoid this problem.

1) RNN structure selection for leakage-aware thermal mod-
eling: By analyzing the difficulty in learning long-term de-
pendencies in Section IV-A2, we know the cause of such
difficulty is that the gradients (like the one in equation (7)),
which propagate over many stages through time, tend to either
vanish or explode when we train the recurrent weight matrix.
Specifically, for the application of leakage-aware thermal
modeling, there is severe exploding gradient induced long-
term dependencies problem as shown in Section IV-A2.

In order to avoid the long-term dependencies problem in
RNN, many variants of RNN were proposed with different
structures. One famous variant is call the long-short term
memory (LSTM) network [69], [70]. However, LSTM has
a complex long-short term memory structure, which makes
it difficult to be integrated into the DTM framework. Fur-
thermore, LSTM was proposed to mitigate the vanishing
gradient induced long-term dependencies problem, so it does
not address the exploding gradient induced problem [64],
which happens in leakage-aware thermal modeling as shown
in Fig. 3.

On the other hand, echo state network (ESN) can avoid both
vanishing gradient and exploding gradient induced long-term
dependencies problems by learning only the output weight ma-
trix in training. Because the long-term dependencies problems
happen when we train the weights among hidden neurons
using backpropagation, which causes gradients to propagate
over many stages (as shown in Section IV-A2). ESN prevents
this problem by avoiding the backpropagation based training
of the weights among hidden neurons. To be specific, the
input and recurrent weight matrices (which contain weights
among hidden neurons) of ESN are created randomly and
fixed, meaning they are not trained using backpropagation.
Instead, only the output weight matrix needs to be trained
using simple linear regression as will be shown later. Since
there is no backpropagation needed in training (but only
a linear regression), there is no gradient propagation and
vanishing/exploding gradient induced long-term dependencies
problem in ESN. As a result, we can use ESN as the leakage-
aware thermal model, which should be able to achieve high
thermal prediction accuracy in DTM without the difficulty in
learning long-term dependencies.

Fig. 4: The ESN architecture of an n-core system. Arrows with
solid lines: fixed weights which are created randomly; arrows
with dashed lines: output weights which need to be trained.
Pdi

(k) is the dynamic power of the i-th core and Ti(k) is the
temperature of the i-th core.

2) ESN architecture for leakage-ware thermal model-
ing: The ESN architecture used for our thermal mod-
eling is shown in Fig. 4. In the figure, Pd(k) =
[Pd1

(k), Pd2
(k), . . . , Pdn

(k)]T is the vector of dynamic
power injections of the multi-core system, and T (k) =
[T1(k), T2(k), . . . , Tn(k)]T contains the output on-chip tem-
peratures. All recurrent connections of ESN are located be-
tween hidden units. The weights of the input-to-hidden units
connections and hidden-to-hidden units connections are ran-
domly assigned and fixed, which are shown as arrows with
solid lines in Fig. 4. The weights of hidden-to-output units
connections and input-to-output units connections should be
determined in the training process, which are shown as arrows
with dashed lines in Fig. 4.

ESN shown in Fig. 4 can be also written into the state space
like formulation similar to the normal RNN in equation (5).
Assume the multi-core system has n cores (T (k) ∈ Rn), n
dynamic power sources (Pd(k) ∈ Rn), and there are q hidden
units (x(k) ∈ Rq) in the ESN, then the ESN based leakage-
aware thermal model can be written as

x(k) = (1− γ)x(k − 1) + γf(APd(k) +Dx(k − 1)),

T (k) = Ex(k) +HPd(k),
(9)

where γ is the parameter of the linear self-connection from
hidden units x(k − 1) to x(k) (such hidden units are called
leaky units). When γ is close to 0, the information for a
long time in the past can be remembered by ESN. When γ
approaches 1, the past information is quickly discarded [50].
This is a simple and quite effective strategy used in ESN to
deal with long-term dependencies problem [49]. Input matrix
A ∈ Rq×n and recurrent connection matrix D ∈ Rq×q are
randomly generated and cannot be changed in the training
process. Matrices E ∈ Rn×q and H ∈ Rn×n represent the
weighted connections between hidden-to-output and input-
to-output, respectively, whose values will be learned in the
training process presented next.

3) Training of the leakage-aware ESN thermal model:
In this part, we introduce the process of training the ESN
based thermal model of multi-core systems. ESN training is
relatively simple: we only need to train the output matrix,
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figurations, RNN models have relatively large training error
and validation error. Even the smallest average training and
validation errors are larger than 6 ◦C and 8 ◦C, respectively.
This means that normal RNN model is not suitable for building
leakage-aware thermal model due to the exploding gradient in-
duced long-term dependencies problem in the training process.
In the next part, we will show this problem can be solved by
using echo state network (ESN), which has a special RNN
structure.

B. ESN based leakage-aware thermal model for multi-core
systems

From Section IV-A2, we know that normal RNN has diffi-
culty in learning long-term dependencies to build an accurate
leakage-aware thermal model for DTM due to the exploding
gradient problem in training process. In this section, we show
that echo state network (ESN) [67], [49], [68], which is an
RNN with special structure, is able to avoid this problem.

1) RNN structure selection for leakage-aware thermal mod-
eling: By analyzing the difficulty in learning long-term de-
pendencies in Section IV-A2, we know the cause of such
difficulty is that the gradients (like the one in equation (7)),
which propagate over many stages through time, tend to either
vanish or explode when we train the recurrent weight matrix.
Specifically, for the application of leakage-aware thermal
modeling, there is severe exploding gradient induced long-
term dependencies problem as shown in Section IV-A2.

In order to avoid the long-term dependencies problem in
RNN, many variants of RNN were proposed with different
structures. One famous variant is call the long-short term
memory (LSTM) network [69], [70]. However, LSTM has
a complex long-short term memory structure, which makes
it difficult to be integrated into the DTM framework. Fur-
thermore, LSTM was proposed to mitigate the vanishing
gradient induced long-term dependencies problem, so it does
not address the exploding gradient induced problem [64],
which happens in leakage-aware thermal modeling as shown
in Fig. 3.

On the other hand, echo state network (ESN) can avoid both
vanishing gradient and exploding gradient induced long-term
dependencies problems by learning only the output weight ma-
trix in training. Because the long-term dependencies problems
happen when we train the weights among hidden neurons
using backpropagation, which causes gradients to propagate
over many stages (as shown in Section IV-A2). ESN prevents
this problem by avoiding the backpropagation based training
of the weights among hidden neurons. To be specific, the
input and recurrent weight matrices (which contain weights
among hidden neurons) of ESN are created randomly and
fixed, meaning they are not trained using backpropagation.
Instead, only the output weight matrix needs to be trained
using simple linear regression as will be shown later. Since
there is no backpropagation needed in training (but only
a linear regression), there is no gradient propagation and
vanishing/exploding gradient induced long-term dependencies
problem in ESN. As a result, we can use ESN as the leakage-
aware thermal model, which should be able to achieve high
thermal prediction accuracy in DTM without the difficulty in
learning long-term dependencies.

Fig. 4: The ESN architecture of an n-core system. Arrows with
solid lines: fixed weights which are created randomly; arrows
with dashed lines: output weights which need to be trained.
Pdi

(k) is the dynamic power of the i-th core and Ti(k) is the
temperature of the i-th core.

2) ESN architecture for leakage-ware thermal model-
ing: The ESN architecture used for our thermal mod-
eling is shown in Fig. 4. In the figure, Pd(k) =
[Pd1

(k), Pd2
(k), . . . , Pdn

(k)]T is the vector of dynamic
power injections of the multi-core system, and T (k) =
[T1(k), T2(k), . . . , Tn(k)]T contains the output on-chip tem-
peratures. All recurrent connections of ESN are located be-
tween hidden units. The weights of the input-to-hidden units
connections and hidden-to-hidden units connections are ran-
domly assigned and fixed, which are shown as arrows with
solid lines in Fig. 4. The weights of hidden-to-output units
connections and input-to-output units connections should be
determined in the training process, which are shown as arrows
with dashed lines in Fig. 4.

ESN shown in Fig. 4 can be also written into the state space
like formulation similar to the normal RNN in equation (5).
Assume the multi-core system has n cores (T (k) ∈ Rn), n
dynamic power sources (Pd(k) ∈ Rn), and there are q hidden
units (x(k) ∈ Rq) in the ESN, then the ESN based leakage-
aware thermal model can be written as

x(k) = (1− γ)x(k − 1) + γf(APd(k) +Dx(k − 1)),

T (k) = Ex(k) +HPd(k),
(9)

where γ is the parameter of the linear self-connection from
hidden units x(k − 1) to x(k) (such hidden units are called
leaky units). When γ is close to 0, the information for a
long time in the past can be remembered by ESN. When γ
approaches 1, the past information is quickly discarded [50].
This is a simple and quite effective strategy used in ESN to
deal with long-term dependencies problem [49]. Input matrix
A ∈ Rq×n and recurrent connection matrix D ∈ Rq×q are
randomly generated and cannot be changed in the training
process. Matrices E ∈ Rn×q and H ∈ Rn×n represent the
weighted connections between hidden-to-output and input-
to-output, respectively, whose values will be learned in the
training process presented next.

3) Training of the leakage-aware ESN thermal model:
In this part, we introduce the process of training the ESN
based thermal model of multi-core systems. ESN training is
relatively simple: we only need to train the output matrix,
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Fig. 5: Framework of ESN MPC based leakage-aware DTM
for multi-core systems. Extended Kalman Filter is used for
state estimation. The blue phrases in parentheses are the tools
used to implement the specific blocks in our experiment which
will be presented in Section V.

denoted here as Wout = [E,H] ∈ Rn×(q+n), using linear
regression as shown below.

Assume we have a training set with training input se-
ries Ptr(k) and training output series Ttr(k), where k =
1, 2, . . . , nk. By injecting the power input data Ptr(k) into
the ESN model (9), we can compute the state series x(k),
k = 1, 2, . . . , nk easily because both A and D are known
constant matrices.

Then, we collect the state series and training input series as
state collection matrix S ∈ Rnk×(q+n),

S =

[

x(1), x(2), . . . , x(nk)
Ptr(1), Ptr(2), . . . , Ptr(nk)

]T

.

Similarly, we collect training output series Ttr(k) as output
collection matrix O ∈ Rnk×n,

O = [Ttr(1), Ttr(2), . . . , Ttr(nk)]
T .

From equation (9), we have OT = WoutS
T , which is a linear

function. As a result, the trained output matrix Wout can be
easily computed as

Wout = (S†O)T , (10)

where S† represents the pseudo-inverse of S.
Since we get the trained ESN model without using gradient

propagation (which may cause the gradient to vanish or
explode), the training of ESN successfully avoids the long-
term dependencies problem. In this way, we obtain a trained
ESN based leakage-aware thermal model, which should be
accurate and can be integrated into MPC for DTM as shown
next in section IV-C.

C. Leakage-aware DTM with ESN MPC for multi-core sys-
tems

Model predictive control (MPC) has a long history in the
process industrial field. In recent years, MPC has been used
for DTM of multi-core systems [17], [18], [19]. However,
these methods are unable to consider the nonlinearity between
leakage and temperature, resulting in significant management
error for systems with high leakage ratio. In Section IV-B,
we have shown the new ESN based compact thermal model,
which is capable of handling the leakage induced nonlinearity.
Although building and training the ESN based thermal model

are not difficult, it is not straightforward to integrate such
model into the MPC based DTM framework to compute the
proper future dynamic power recommendations, because exist-
ing MPC based DTM methods require compact linear thermal
models [17], [18], [19]. In this section, we present a newly
designed DTM framework: ESN MPC. In this framework,
the MPC flow is specially modified to adapt the ESN based
nonlinear thermal model, and is able to provide the leakage-
aware power adjustment for multi-core systems.

The framework of the new ESN MPC based leakage-aware
DTM method for multi-core systems is shown in Fig. 5. The
basic task of ESN MPC is to calculate the input dynamic
power recommendation Pd(k + 1), such that the future plant
temperature will track a given temperature target. In order
to do that, the ESN MPC predicts the future temperature
T (k + i|k) using the ESN thermal model (presented in
Section IV-B) with current state estimation x(k). Then, the
proper Pd(k + 1) is solved from an optimization problem
(represented by the “optimization” block in Fig. 5) which
minimizes the difference between the predicted temperature
T (k + i|k) and the target temperature. Note that current
state x(k) is not directly available. It should be estimated
using extended Kalman filter [67] with sensor temperature
information T (k) from the multi-core system plant.

The challenge in the ESN MPC based DTM is how to
handle the nonlinearity of the ESN thermal model properly
in the power recommendation computing process. Now, we
present detailed steps of the ESN MPC based DTM.

First, at current time (assume we are at time k), we denote
the future input dynamic power trajectory (which is unknown
and needs to be computed in the end) into the future Nc steps
(where Nc is called the control horizon in MPC) as

Pd = [Pd(k + 1)T , Pd(k + 2)T , . . . , Pd(k +Nc)
T ]T ,

and the future input dynamic power difference trajectory as
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T ]T ,

where ∆Pd(k + i) = Pd(k + i)− Pd(k + i− 1) ∈ Rn, Pd ∈
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Then, the temperature predictions from current time k into
the future Np steps (where Np is called the prediction horizon
in MPC), denoted as T (k + i|k), i = 1, 2, . . . , Np, can
be expressed as a function of Pd, using the ESN thermal
model (9) and current temperature information T (k) read from
thermal sensors in the multi-core system. These temperature
predictions are written in vector trajectory T ∈ RNpn as

T = [T (k + 1|k)T , T (k + 2|k)T , . . . , T (k +Np|k)
T ]T ,

where T (k+ i|k)T is the predicted temperatures at time k+ i
using information of current time k.

Similarly, the target temperature vector Ttg is written in a
vector trajectory Ttg ∈ RNpn as

Ttg = [TT
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Next, we will introduce the optimization process in ESN
MPC, which is represented by the “optimization” block in
Fig. 5. As briefly mentioned before, the objective of the MPC
based DTM is to compute the proper power recommendation
which brings the predicted output temperature T as close as
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Fig. 5: Framework of ESN MPC based leakage-aware DTM
for multi-core systems. Extended Kalman Filter is used for
state estimation. The blue phrases in parentheses are the tools
used to implement the specific blocks in our experiment which
will be presented in Section V.

denoted here as Wout = [E,H] ∈ Rn×(q+n), using linear
regression as shown below.

Assume we have a training set with training input se-
ries Ptr(k) and training output series Ttr(k), where k =
1, 2, . . . , nk. By injecting the power input data Ptr(k) into
the ESN model (9), we can compute the state series x(k),
k = 1, 2, . . . , nk easily because both A and D are known
constant matrices.
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T , which is a linear

function. As a result, the trained output matrix Wout can be
easily computed as

Wout = (S†O)T , (10)

where S† represents the pseudo-inverse of S.
Since we get the trained ESN model without using gradient

propagation (which may cause the gradient to vanish or
explode), the training of ESN successfully avoids the long-
term dependencies problem. In this way, we obtain a trained
ESN based leakage-aware thermal model, which should be
accurate and can be integrated into MPC for DTM as shown
next in section IV-C.

C. Leakage-aware DTM with ESN MPC for multi-core sys-
tems

Model predictive control (MPC) has a long history in the
process industrial field. In recent years, MPC has been used
for DTM of multi-core systems [17], [18], [19]. However,
these methods are unable to consider the nonlinearity between
leakage and temperature, resulting in significant management
error for systems with high leakage ratio. In Section IV-B,
we have shown the new ESN based compact thermal model,
which is capable of handling the leakage induced nonlinearity.
Although building and training the ESN based thermal model
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Simple training via least square,
No exploding gradient problem:



Many-Core Solutions
• Hierarchical thermal management

H. Wang, J. Ma, et al., “Hierarchical dynamic thermal management method 
for high-performance many-core microprocessors”, ACM Trans. on Design 
Automation of Electronic Systems, 2016



• We want to match the desired power profile using 
current power profile, by using task migration and DVFS.

MPC

Current thermal profile 

Desired thermal profile 

Matching problem

Current power profile 

Desired power profile 

Model predictive control in thermal 
management



• Computing time increases as core number increases
• Large control delay reduces efficiency

An example of 100-core chip, assuming core in red is 
in charge of the DTM computing.

The many-core system DTM problem



Two-level Hierarchical method 
• Lower level matching
• Simply group spatially adjacent cores into blocks.
• Do matching inside each block (intra block)

l Upper level matching
l Do Matching using lower level unmatched ones (inter block)

Lower level matching Upper level matching



3-D Integration
• Runtime stress estimation using ANN

H. Wang, T. Xiao, D. Huang, L. Zhang, et al., “Runtime stress estimation for 
3D IC reliability management using artificial neural network”, ACM Trans. on 
Design Automation of Electronic Systems, 2019

• STREAM: Stress-aware reliability management
H. Wang, D. Huang, et al., “STREAM: Stress and thermal aware reliability 
management for 3D-ICs”, IEEE Trans. on CAD of Integrated Circuits and 
Systems, 2018



l Stress is significant around Through silicon via (TSV)
l Stress changes with temperature in space and time
l Temperature changes significantly in multi-core systems
l Runtime stress estimation needed

Stress problem in 3D IC

1:4 H. Wang et al.

(a) A 3D IC with uniform TSV dis-
tribution.

(b) A 3D IC with nonuniform TSV
distribution.

(c) A 3D IC with random TSV dis-
tribution.

Fig. 1. 3D ICs with di!erent TSV distributions. For simplicity, package structure is not shown in the figure.

(a) Side view showing the two die layers connected
with 144 TSVs.

(b) Bo"om view of chip showing
the 16-core architecture for each
layer.

Fig. 2. A 32-core (16 cores on each layer) 3D IC with uniform TSV distribution built in COMSOL. Package
structure is not shown in the figure.

(a) Cross-section view. (b) Longitudinal-section view.

Fig. 3. TSV filled with Cu with a SiO2 liner.

A popularly used TSV structure [22] with full copper !lling and a silicon dioxide liner between
copper and silicon applied is shown in Fig. 3.
As a necessary structure in 3D IC, TSVs, however, lead to thermal induced stress problem, which

harms the reliability of the chip. There are two major reasons for the problem. For the !rst reason,
TSV usually has a much higher thermal conductivity than silicon wafers because of the materials it
used. As a result, a large temperature gradient may appear in the area close to TSV, which usually
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(a) Temperature (K) distribution. (b) Von Mises thermal stress
(MPa) distribution.

Fig. 4. Temperature and the corresponding Von Mises thermal stress distributions of the bo!om surface of
the 3D IC with uniform TSV distribution in COMSOL, with stress-free temperature set as 300K [8].

leads to large thermal stress. For the second reason, the mismatch in CTE also brings signi!cant
stress increase. The CTE of copper is 17 × 10−6 K−1, which is nearly seven times larger than that of
silicon (2.56 × 10−6 K−1). When temperature increases with the same degree, the copper expansion
will be much more signi!cant than silicon, resulting in considerable stress.

The stress in solid in cartesian coordinate can be expressed as [6]:






−fx = kx −
Eα

1 − 2ν
·
∂T

∂x
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·
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.

The terms (fx , fy , fz ) are forces in x , y, and z directions, (u,v,w) are displacements in the three
directions, E is the elastic modulus, ν is the Poisson ratio, α is the thermal expansion coe"cient,T
is the temperature, µ and λ are the Lamé coe"cients. From (1), it can be observed that (fx , fy, fz )
changes with temperature T .
As a powerfulmethod for the analysis of thermo-mechanical stress in a complex structure where

experimental investigation is quite di"cult, FEM method can be used to build the 3D IC stress
model based on (1). We have built a two-layer 3D IC model with 12× 12 TSVs uniformly placed in
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Stress changes with temperatureA 3D IC (up) with its TSV structure (down)



l Input: temperatures around each TSV
l Output: maximum stress
l Inside: neurals with different connections

Framework of ANN stress model

Runtime Stress Estimation for 3D IC Reliability Management 1:9

Fig. 6. A normal ANN based stress model with two hidden layers , nд inputs and 1 output. All the adjacent
layers are fully-connected in this model.

Fig. 7. The circular shaped temperature grid. Assume the plane around the TSV are divided into k pieces
(each piece with an angle θ = 2π/k in the figure) around the full circle by the radial lines, and j rings
divided by the circles, making a total of nд = k × j temperature inputs. Ti (1),Ti (2), . . . ,Ti (j) represent the j
temperatures of the i-th piece.

stress estimation. It will take the temperature data around each TSV as input, and output the
maximum stress estimation for the corresponding TSV in a 3D IC. In order to achieve the best
stress estimation accuracy, we recommend collecting the training samples from the same 3D IC
on which the runtime stress estimation is performed.
With the same general framework presented above, the ANN stress model can have a variety

of structures. They have di!erent model accuracy and compactness due to their di!erent feature
extraction abilities. In the following parts, three ANN stress models with di!erent structures will
be demonstrated, including the normal ANN based stress model (Section 4.3), ANN stress model
with hand-crafted feature extraction (Section 4.4), and CNN based stress model (Section 4.5).

4.3 The normal ANN based stress model

In general, the normal ANN based stress model has a simple structure. It has multiple layers with
di!erent numbers of neurons in each layer. The adjacent layers in the normal ANN based stress
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(a) The input-output structure of
the ANN based stress model. The
model is composed of neurons
shown in Fig. 5b.

(b) The function of one neuron in
the ANN based stress model.

Fig. 5. The framework of ANN based stress model. All ANN stress models presented in this article share the
same input-output structure and neuron function as shown in the figure.

For runtime usage, the temperature around the TSV can be obtained by runtime thermal estima-
tion method with the help from the on-chip thermal sensors. There are many runtime thermal
estimation methods proposed recently. For example, the interpolation based method estimates the
full-chip temperature with negligible computing overhead [21], and the leakage-aware thermal
estimation method provides highly accurate temperature distribution at runtime [36].
The model output is the maximum stress σ . The ANN stress model is also compatible with

multiple outputs, denoted as {σ1,σ2, . . . ,σno }, where no is the output number. But in this work,
we focus on the single output case for simplicity, which is su!cient for reliability management at
runtime.
Internally, ANNs are generally composed of interconnected “neurons”, which send messages

to each other. The neurons have the same structure as shown in Fig. 5b, representing the same
function (assume this neuron has ni inputs):

y = f

(
ni∑

i=1

xiwi + b

)

, (3)

where xi is the i-th input, wi is the weight of xi , b is the bias, and y is the output. f is a nonlinear
function called the activation function. The common activation functions are tanh, sigmoid and
relu. Their formulas are expressed as follows:

f (x) = tanh(x) =
ex − e−x

ex + e−x
,

f (x) = sigmoid(x) =
1

1 + e−x
,

f (x) = relu(x) = max(0,x).

Although all neurons have the same structure, multiple neurons can compose di"erent layers,
and multiple di"erent layers compose di"erent complex neural networks.
The ANN stress model must be trained o#ine before it can be used for runtime stress estimation.

In order to perform training, many input (temperature around the TSV) and output (maximum
stress) data pairs (called samples) of the ANN stress model are $rst obtained (one data pair is
obtained from one TSV) by measurements or detailed FEM simulations of the 3D IC with di"erent
power/temperature distributions. Then, the ANN stress model is trained using these data pairs
(samples). Speci$cally, training means tuning the network parameters (such as weights) in order
to minimize the di"erence between the ANN stress model outputs (with the sample input data as
input) and the sample output data. After training, the ANN stress model can be used for runtime
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Although all neurons have the same structure, multiple neurons can compose di"erent layers,
and multiple di"erent layers compose di"erent complex neural networks.
The ANN stress model must be trained o#ine before it can be used for runtime stress estimation.

In order to perform training, many input (temperature around the TSV) and output (maximum
stress) data pairs (called samples) of the ANN stress model are $rst obtained (one data pair is
obtained from one TSV) by measurements or detailed FEM simulations of the 3D IC with di"erent
power/temperature distributions. Then, the ANN stress model is trained using these data pairs
(samples). Speci$cally, training means tuning the network parameters (such as weights) in order
to minimize the di"erence between the ANN stress model outputs (with the sample input data as
input) and the sample output data. After training, the ANN stress model can be used for runtime
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ANN stress model framework

Neural inside ANN stress model
Model input: temperatures 
around each TSV



l Different neural connections leads to different models
l CNN stress model works best in our test 

Example: CNN stress model
1:12 H. Wang et al.

Fig. 8. Structure of the convolutional neural network (CNN) based stress model. Each square in the figure
represents a data matrix, which is also called feature map in convolutional layer and pooling layer. The
convolutional layer includes both convolution and activation operations. In each convolutional/pooling layer,
there are multiple convolution/pooling operations working in parallel. There can be multiple convolutional
and pooling layers appearing alternately in the CNN stressmodel shown as “More convolutional and pooling
layers” in the figure. The input and output of the CNN stress model follow the ANN stress model framework
shown in Fig. 5a, except that the input of the CNN stress model is stored in matrix form rather than in vector
form.

(a) The convolution operation in ma-
trix form. The kernel size is 2 × 2 in
this example.

(b) The convolution
operation demonstrated
using neurons. All the
black lines represent
connections with shared
weight K(1, 1).

Fig. 9. Illustration of the convolution process in the convolutional layer of the CNN stress model.

4.5.4 The convolutional layer and its properties. The convolutional layer in Fig. 8 performs convo-
lution operation, which is one of the key operations in the CNN stress model. The main purpose of
performing convolution in stress estimation is to eliminate the redundancies in the input matrix
and storing only the important information into a smaller output matrix called feature map. The

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.



3-D Integration
• Runtime stress estimation using ANN

H. Wang, T. Xiao, D. Huang, L. Zhang, et al., “Runtime stress estimation for 
3D IC reliability management using artificial neural network”, ACM Trans. on 
Design Automation of Electronic Systems, 2019

• STREAM: Stress-aware reliability management
H. Wang, D. Huang, et al., “STREAM: Stress and thermal aware reliability 
management for 3D-ICs”, IEEE Trans. on CAD of Integrated Circuits and 
Systems, 2018



l We can estimate 3D IC lifetime with ANN stress model
l When the expected lifetime is 

l longer than designed: boost performance
l shorter than designed: limit performance

Boost 3D IC performance with ANN 
stress model
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Fig. 3: Stress and thermal aware reliability management flow.
The detailed structures of the lifetime estimator and lifetime
MPC are given further in Fig. 8 and Fig. 9, respectively.

STREAM, we propose to use the lifetime MPC to quantitively
compute the proper future power suggestions. Since lifetime
MPC uses model predictive control which not only considers
3D IC system’s current state but also its future state, it leads to
high system performance by fully utilizing the lifetime deposit.

The basic flow of STREAM is given in Fig. 3. The ma-
jor components of STREAM include an ANN based stress
model, a lifetime estimator with lifetime banking technique,
and a lifetime model predictive control. Integrated with the
ANN based stress model, the lifetime estimator takes the 3D
IC temperature information to quantify the accurate lifetime
information using lifetime banking technique. Then, based on
such lifetime information and 3D IC temperature information,
lifetime MPC is used to compute the power suggestion for
the future management cycle, which concludes the reliability
management loop.

B. ANN based stress model for 3D ICs

1) The motivation of using ANN based stress model:

The main problem of using the reliability models presented
in Section III-B is how to get the accurate stress information
σ. Conventionally, stress information can be estimated by finite
element methods (FEM) [19], [20]. But FEM methods cannot
be used for runtime thermal management due to its large
computing cost. Previous works [21], [43] use temperature
difference to approximate complicate σ, which can introduce
large error. In this work, we use an artificial neural network
(ANN) [44] to perform the fast and accurate stress analysis
for reliability management.

A widely used TSV structure with full copper filling and a
silicon dioxide liner between copper and silicon is shown in
Fig. 2. As a necessary structure in 3D IC, TSVs, however, lead
to thermal induced stress problem, which harms the reliability
of the chip. There are two major reasons for the problem.
First, TSV has a much higher thermal conductivity than silicon
wafers. As a result, large temperature gradient may appear in
the area close to TSV, which usually leads to large thermal
stress. Second, mismatch in coefficient of thermal expansion
(CTE) also brings significant stress increase. Specifically,
copper’s CTE (17× 10−6 K−1) is seven times larger than
the CTE of silicon (2.56× 10−6 K−1). When temperature
increases with the same degree, copper expansion will be much
more significant than silicon, resulting in considerable stress.

One example of temperature and stress distributions of a 3D
IC simulated using the FEM tool COMSOL is given in Fig. 4.
The experimental settings follow the work in [18]. Please note
that in Fig. 4c, the whole range of stress is actually from
112MPa to 834MPa, but we choose to display only the range
from 130MPa to 150MPa to make the stress distribution
more viewable. We can see that the stress distribution in 3D IC
is largely influenced by both TSV distribution and temperature
distribution. As a result, we build an ANN stress model to
capture such complex effects at runtime.

2) Structure and training of the ANN stress model: In
machine learning and cognitive science, ANNs are a family
of statistical learning models inspired by biological neural
networks to estimate or approximate functions that depend on
a large number of inputs. ANNs are generally presented as
systems of interconnected “neurons”, which connect and send
messages to each other.

The basic structure of the ANN stress model used in this
work is shown in Fig. 5. The input of this model is the
temperature distribution around a TSV in 3D IC, denoted as
{T1, T2, . . . , Tng

}, where ng is the grid number around each
TSV. The maximum stress around a TSV is chosen as the
output stress information σ to save the computing cost of the
ANN model, because it is the most important one for reliability
management. Please note that other output other than the
maximum stress or more outputs can also be implemented
if necessary. Each circle in the figure is a neuron. For neurons
in our model, they have the same function structure as

out =
ni
∑

i=1

Iiwi, (7)

where the terms Ii (Ti for the neuron in the input layer) and
wi, i = 1, 2, . . . , ni are inputs and weights of the neuron, out
is the output of the neuron (σ for the neuron in the output
layer). The values of the weights wi need to be determined in
the training process to make the ANN work as desired, which
will be shown later. There are one input layer, one output layer,
and usually one or several hidden layers in this ANN stress
model. With one or more hidden layers, the network is able
to model higher-order statistical properties.

Before being applied in STREAM, the ANN stress model
needs to be trained using temperature input and stress output
data (called training samples) specially generated for training
purpose. The goal of training is to find the optimal weights
(wi in (7)) in the ANN model, which leads to good output
accuracy. In this work, we use BackPropagation (BP) method
to train our ANN stress model, as it is a common method
of training ANNs used in conjunction with an optimization
method such as gradient descent. BP method calculates the
gradient of a loss function with respect to all the weights in
the network. The gradient is fed to the optimization method,
which in turn uses it to update the weights, in an attempt to
minimize the loss function. More specifically, before training,
the weights of the ANN model will be set randomly. They
will be updated by learning from the training samples. Each
sample, taken from the system to be modeled, is an input-
output set {T1, T2, . . . , Tng

,σs}, where {T1, T2, . . . , Tng
} are

the inputs and σs is the corresponding output of the system to



l Lifetime banking
l Deposit lifetime
l Consume lifetime
l Lifetime deposit should 

never be negative

l Lifetime model predictive 
control (MPC)
l Compute the power 

recommendation for 3D IC
l DVFS performed to match 

the power recommendation

Lifetime banking with lifetime MPC
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Fig. 13: Average throughput improvement ratio by using
STREAM over by using the existing method [21] on 3D ICs.

From the observation above, we conclude that STREAM,
equipped with lifetime estimator, is able to improve system
performance as long as there are cool phases, which are
common in 3D IC systems.

D. Overall reliability and performance enhancement by using

STREAM

In this part, we test the overall reliability and performance
enhancement by using STREAM.

First, we let the same SPEC benchmark workload run on all
cores of 3D IC, and compute the average throughput (MIPS)
improvement ratio of STREAM over the existing method. The
average throughput improvement ratio is calculated as

ratio =
MIPSSTREAM −MIPSexisting

MIPSexisting
, (15)

where MIPSSTREAM is the average system MIPS with
STREAM, and MIPSexisting is the average MIPS with the
existing method. Since different 3D IC cores have different
running speeds with reliability management, the SPEC bench-
mark on each core will restart upon completion for a fair
throughput comparison.

Fig. 13 shows the average throughput improvement ratio by
using STREAM over by using the existing method with dif-
ferent benchmark workloads. The improvement ratio achieves
5.5% with “bwaves”. The improvement ratio with “bwaves”
is significant because this benchmark has long cool phase and
low cool phase temperature, which enable performance boost
in STREAM. On the other hand, we note that the improvement
ratio is very small (nearly zero) for bechmarks “hmmer”,
“mcf” and “sjeng”, with two different reasons. The reason for
“hmmer” is that the 3D IC cores are always at the hot phase
by running this benchmark, which completely disables lifetime
deposit in STREAM. The reason for “mcf” and “sjeng” is that
the 3D IC cores are always at cool phase by running these two
benchmarks, which means no performance boost is needed at
all. Overall, STREAM outperforms existing method in system
throughput comparison, with the performance boost ability.
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(b) Lifetime deposit information of STREAM.

Fig. 14: Max temperature of 3D IC’s synthetic workload under
different management methods.

In addition to the benchmark test above, we also created
a synthetic workload to emulate the real world application
behavior. This synthetic workload has three cool phases and
two hot phases with different temperatures. Fig. 14a shows
the transient thermal behavior of 3D IC with this synthetic
workload under different reliability management methods and
without reliability management. Without reliability manage-
ment, the temperature can reach 110 ◦C which harms the
reliability of the 3D IC system. With the existing method,
the temperature can be controlled below 90 ◦C, which is the
threshold temperature without harming the reliability. How-
ever, the threshold temperature is not violated even after the
cool phase, meaning the performance potential of the 3D IC
system is not fully exploited. In addition, there is significant
temperature oscillation around the threshold temperature, indi-
cating poor control performance with large control overshoot
with the existing method.

Now let us analyze the performance of STREAM with both
Fig. 14a and Fig. 14b. We can see that from 0 s to 100 s,
3D IC stays in cool phase and lifetime deposit increases with
time. There is no reliability management needed for STREAM
during this time period. From 100 s to 150 s, 3D IC runs
in hot phase and begins to consume lifetime banking. Since
the lifetime deposit is not fully consumed during this hot
phase, STREAM does not take any control action even if the
threshold temperature is violated. System performance with
STREAM is higher than that with the existing method for this
hot phase. After the second cool phase (from 150 s to 200 s),



Dark Silicon Hazard
• GDP: Greedy based dynamic power budgeting

H. Wang, D. Tang, M. Zhang, et al., “GDP: A greedy based dynamic power 
budgeting method for multi/many-core systems in dark silicon”, IEEE Trans. 
on Computers, 2019

• Performance optimization of 3-D 
microprocessors
H. Wang, W. Li, W. Qi, et al., “Runtime performance optimization of 3-D 
microprocessors in dark silicon”, IEEE Trans. on Computers, 2020



Two battles lost against leakage

Leakage 
increases

Core # 
increases

Dark 
silicon

Fix core #
Increase frequency
Best days in performance increase!

Fix frequency
Increase core #

Not all cores operates
@ full freq anymore
We lost Dennard scaling
Solutions needed!

Around 2006 Recently

l Leakage power does not scale like dynamic power
l Power density increases with scaling (Dennard scaling lost)

l Power (heat) removal ability remains the same



Power budgeting for dark silicon
l Activating different cores 

leads to different power 
budget

l How to determine the 
active core distributions 
and power budget?

l Our solution: Greedy 
Dynamic Power (GDP)
l Locate active core positions 

at runtime
l Compute power budget for 

each core
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938 the GDP computed power budget is very close to the global
939 optimal one.

940 5.2 Effectiveness and Performance Tests for
941 Transient Cases
942 GDP is a dynamic based method, meaning it is able to pro-
943 vide power budget adapting to transient running state of
944 the multi/many-core dark silicon system.
945 GDP mainly focuses on computing the power budget
946 dynamically for the multi/many-core dark silicon system.
947 By using the power budget and active core distribution
948 suggestion provided by GDP, many different thermal man-
949 agement methods can be designed and optimized, which is
950 not the main focus of this work. In order to test the dynamic
951 behavior of GDP for transient cases, the same simple task
952 scheduling and dynamic voltage and frequency scaling
953 strategy is used for allmethods: a powermatching determines
954 task scheduling and DVFS is performed when the task on the
955 core consumes more power than the provided power budget.
956 Please note that task scheduling and DVFS are used here only
957 on the purpose of showing power budgeting performance.
958 Advanced task scheduling and DVFS methods may further
959 boost performance but is out of scope of thiswork.
960 In the experiment, GDP is set to compute power budget
961 dynamically for every 10 seconds (h ¼ 10). State-of-the-art
962 power budgetingmethod TSP [18] and neighbor-awaremulti-
963 core dynamic thermal management method NADTM [14] are
964 used for comparison. Two SPEC benchmark applications are
965 running on each active core by round-robin scheduling, with
966 time slice set to be 50 ms [41]. At initiation, the applications
967 are randomly assigned to the active cores. The computing
968 overheads of all methods are considered in the experiments as
969 throughput deduction and management latency. The power
970 consumption is obtained by the power estimator Wattch [42].
971 There are 18 V/F levels (from 0.32V@140MHz to 1V@2GHz)

972for DVFS in our experiment, with DVFS action overhead set
973to be 10ms by following the settings in [43]. The taskmigration
974overhead is set as 10ms according to [44].
975We first verify the effectiveness of TSP and GDP, i.e., we
976check whether the temperature will be constrained below
977the threshold if the given power budget is followed. We
978plot the transient temperature results with GDP and TSP in
979Fig. 9a and 9b, respectively. Because TSP is a static power
980budgeting method, we have to activate cores according to
981the worst case distribution to test if the system temperature
982is properly controlled with TSP power budget. For GDP, the
983cores are activated according to the sub-optimal distribution
984computed by the greedy based algorithm in GDP. From the
985figure, we can see that both power budgets provided by
986TSP and GDP are able to constrain the temperatures of all
987active cores below the user defined thermal threshold (80"C
988in our test case) with the simple task scheduling and DVFS.2

989In Fig. 9a, core temperature switches between high tempera-
990ture and low temperature because GDP may switch active
991core positions dynamically.
992Next, we compareGDPwith the neighbor-aware dynamic
993thermal management method NADTM [14], because both
994methods take neighbor core’s temperature into account.
995The transient temperature results with NADTM is shown in
996Fig. 9c. We see that NADTM is not able to constrain the core
997temperature below the given thermal threshold for the dark
998silicon system. NADTM fails because it is not designed
999considering dark silicon properties. We provide the detailed
1000discussion as follows.
1001The basic idea of NADTM is to use a linear model with
1002three inputs (own current temperature, own increment factor,
1003and neighbor increment factor) and three parameters3 to
1004predict the core’s own temperature.
1005The major problem of using NADTM in dark silicon
1006system is that there are only three inputs and three para-
1007meters (specifically, a;b; g in NADTM paper) in tempera-
1008ture prediction, and only one input and one parameter (g)
1009among them is used to consider all four neighbor cores’
1010impact. This is far from sufficient to consider the complex
1011dark silicon temperature behaviors. To be specific, for dark
1012silicon system, the neighbor cores could be inactive state
1013or off state, and they impact the neighbor cores quite differ-
1014ently when in different state. If we put all neighbor cores’
1015on-off combinations and different benchmarks into the
1016training process, we end up with a large number of training
1017samples with large diversity. For this overdetermined prob-
1018lem, the least square method will find a solution a;b; g
1019which works best for all samples. However, because of the
1020large number and large diversity of the samples, the least
1021square solution even has large error for the training sam-
1022ples. In another word, it is impractical to use a model with
1023only three parameters to predict the complex temperature
1024behavior of the dark silicon multi-core systems.

Fig. 8. Temperature distributions of systems with different core number
and active core number.

2. In the TSP test case, temperatures of the active cores will be signif-
icantly lower than threshold if active core distribution other than the
worst case one is used. This is because TSP is a static power budgeting
method, which has to provide over pessimistic (i.e., much lower than
real) power budget to guarantee thermal safety of the system in all con-
ditions including the worst one.

3. The three parameters are trained using least-square estimation in
NADTM algorithm.
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The greedy iteration in GDP
l Searching for the best 

distribution is expensive
l Search the local best one 

instead!
l Locate the first best one and 

fix its position
l Search for the second best 

one and fix its position
l Continue this greedy 

iteration

l Transient temp. effects 
considered at runtime

4.5.1 Reverse GDP to Locate Non-Active Cores

For a system with large active core ratio, GDP will locate the
active cores one by one with a lot of iterations. For example,
there will be 60 iterations for GDP to find the power budget
for a 64-core system with 60 active cores. For such condition,
we can actually locate the non-active cores instead of the
active cores, in order to reduce the computing overhead.
We call this method which aims to find non-active core
positions rather than active core positions as reverse GDP.

The main idea of reverse GDP is to find the locations
of non-active cores rather than active cores, in a greedy
manner similar to the standard GDP. The steps of reverse
GDP for one iteration are given as follows: First, calculate
the power budget using the QP optimization (11), by assum-
ing all cores are active except for the already located non-
active cores in previous iterations (for initiation, simply
assume all cores are active). Second, among all active cores,
find the one (assume the jth core) with smallest kajpjk1.
This core (the jth core) is the newly located non-active core
in this iteration. At last, calculate the power budget for new
distribution and go to the second step to start the next itera-
tion until sufficient non-active cores are located.

Reverse GDP has lower computing overhead when the
active core ratio is high. For the same 64-core system with
60 active cores, reverse GDP only needs 4 iterations com-
pared to 60 iterations of standard GDP.

4.5.2 Parallel GDP for Parallel Computing

The computing overhead of GDP also grows with core num-
ber. For the system with a large number of cores, we divide
the original system into smaller sub-systems, and find the
active core positions for each sub-system in parallel to reduce
the computing overhead.We call thismethod as parallel GDP.

The main idea of parallel GDP is to divide the original
system into several small sub-systemswithmoderate number
of cores, such that the active cores can be located for each sub-
system with standard GDP process in parallel. Since we only
need to find the sub-optimal active core locations, the bound-
aries of each sub-system can be treated as adiabaticwith toler-
able error loss. The active core number in each sub-system
can be setmanually by assuming uniform active core distribu-
tion or by experience, as long as the total active core number
is met. After all active core positions are located, we compute
the power budget using the original system model (not the
sub-system model anymore). As a result, the impact of the
neighbor sub-systems is also accurately considered in parallel
GDP. Please note that although the final power budget com-
puting step is not a parallel process, it is still very fast because
there is no iteration in this step.

Parallel GDP enables performing GDP even on a system
with large number of cores. For example, if we apply paral-
lel GDP to a 64-core system by dividing the original system
into four 16-core sub-systems, the computing overhead is
similar to applying standard GDP to a 16-core system.

4.6 Guidance on Estimating the Optimality Lower-
Bound of GDP in Steady State

Since GDP provides sub-optimal solution, one natural ques-
tion is how optimal is the GDP solution. However, deriving
a theoretical optimality lower-bound for GDP is extremely

difficult because the optimality of GDP differs with system
core number, active core number, and the system thermal
model (Amatrix, etc.). Even checking the optimality of GDP
is challenging because of the inability to obtain the optimal
solution for just moderate sized multi-core systems: the
computing complexity is so high that we cannot get the
optimal solution for the 25-core system with 12 active cores
even after over 12 hours’ computing.

However, we still give a guidance on estimating the lower-
bound of GDP in steady state. This guidance is based on the
observation that the optimality of GDP increases with system
core number n, simply because the active core area mismatch
ratio between the GDP solution and the optimal solution
is smaller with larger system core number n. For example,
finding even one wrong active core position for a 9-core
system can make a relatively large difference in power bud-
get. However, finding even several wrong active core posi-
tions in a 1000-core system is not a big deal in power budget.
As a result, we can seek for the largest difference between the
GDP solution and the optimal solution in systems with small
number of cores. Such difference could be the steady state
optimality lower-bound for systems with different number
of cores sharing the samepackage structure.

To be specific, for quad-core (2! 2) system in steady
state, the active core distribution given by GDP is absolutely
optimal for any active core numbers. For the 3! 3 core
system, not all GDP solutions are optimal anymore because
GDP is greedy based. Specifically, GDP solutions are non-
optimal for active core number 2, 3, 4, as can be easily
observed in Fig. 7. By comparing the steady state power
budgets given by GDP and the optimal method, we find the
4 active core case has the largest power budget difference
(1.5%). Thus, we can take such difference as the optimality

Fig. 7. Temperature distributions of the 9-core system with the power
budget given by GDP’s first four greedy steps.
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4.5.1 Reverse GDP to Locate Non-Active Cores

For a system with large active core ratio, GDP will locate the
active cores one by one with a lot of iterations. For example,
there will be 60 iterations for GDP to find the power budget
for a 64-core system with 60 active cores. For such condition,
we can actually locate the non-active cores instead of the
active cores, in order to reduce the computing overhead.
We call this method which aims to find non-active core
positions rather than active core positions as reverse GDP.

The main idea of reverse GDP is to find the locations
of non-active cores rather than active cores, in a greedy
manner similar to the standard GDP. The steps of reverse
GDP for one iteration are given as follows: First, calculate
the power budget using the QP optimization (11), by assum-
ing all cores are active except for the already located non-
active cores in previous iterations (for initiation, simply
assume all cores are active). Second, among all active cores,
find the one (assume the jth core) with smallest kajpjk1.
This core (the jth core) is the newly located non-active core
in this iteration. At last, calculate the power budget for new
distribution and go to the second step to start the next itera-
tion until sufficient non-active cores are located.

Reverse GDP has lower computing overhead when the
active core ratio is high. For the same 64-core system with
60 active cores, reverse GDP only needs 4 iterations com-
pared to 60 iterations of standard GDP.

4.5.2 Parallel GDP for Parallel Computing

The computing overhead of GDP also grows with core num-
ber. For the system with a large number of cores, we divide
the original system into smaller sub-systems, and find the
active core positions for each sub-system in parallel to reduce
the computing overhead.We call thismethod as parallel GDP.

The main idea of parallel GDP is to divide the original
system into several small sub-systemswithmoderate number
of cores, such that the active cores can be located for each sub-
system with standard GDP process in parallel. Since we only
need to find the sub-optimal active core locations, the bound-
aries of each sub-system can be treated as adiabaticwith toler-
able error loss. The active core number in each sub-system
can be setmanually by assuming uniform active core distribu-
tion or by experience, as long as the total active core number
is met. After all active core positions are located, we compute
the power budget using the original system model (not the
sub-system model anymore). As a result, the impact of the
neighbor sub-systems is also accurately considered in parallel
GDP. Please note that although the final power budget com-
puting step is not a parallel process, it is still very fast because
there is no iteration in this step.

Parallel GDP enables performing GDP even on a system
with large number of cores. For example, if we apply paral-
lel GDP to a 64-core system by dividing the original system
into four 16-core sub-systems, the computing overhead is
similar to applying standard GDP to a 16-core system.

4.6 Guidance on Estimating the Optimality Lower-
Bound of GDP in Steady State

Since GDP provides sub-optimal solution, one natural ques-
tion is how optimal is the GDP solution. However, deriving
a theoretical optimality lower-bound for GDP is extremely

difficult because the optimality of GDP differs with system
core number, active core number, and the system thermal
model (Amatrix, etc.). Even checking the optimality of GDP
is challenging because of the inability to obtain the optimal
solution for just moderate sized multi-core systems: the
computing complexity is so high that we cannot get the
optimal solution for the 25-core system with 12 active cores
even after over 12 hours’ computing.

However, we still give a guidance on estimating the lower-
bound of GDP in steady state. This guidance is based on the
observation that the optimality of GDP increases with system
core number n, simply because the active core area mismatch
ratio between the GDP solution and the optimal solution
is smaller with larger system core number n. For example,
finding even one wrong active core position for a 9-core
system can make a relatively large difference in power bud-
get. However, finding even several wrong active core posi-
tions in a 1000-core system is not a big deal in power budget.
As a result, we can seek for the largest difference between the
GDP solution and the optimal solution in systems with small
number of cores. Such difference could be the steady state
optimality lower-bound for systems with different number
of cores sharing the samepackage structure.

To be specific, for quad-core (2! 2) system in steady
state, the active core distribution given by GDP is absolutely
optimal for any active core numbers. For the 3! 3 core
system, not all GDP solutions are optimal anymore because
GDP is greedy based. Specifically, GDP solutions are non-
optimal for active core number 2, 3, 4, as can be easily
observed in Fig. 7. By comparing the steady state power
budgets given by GDP and the optimal method, we find the
4 active core case has the largest power budget difference
(1.5%). Thus, we can take such difference as the optimality

Fig. 7. Temperature distributions of the 9-core system with the power
budget given by GDP’s first four greedy steps.
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For a system with large active core ratio, GDP will locate the
active cores one by one with a lot of iterations. For example,
there will be 60 iterations for GDP to find the power budget
for a 64-core system with 60 active cores. For such condition,
we can actually locate the non-active cores instead of the
active cores, in order to reduce the computing overhead.
We call this method which aims to find non-active core
positions rather than active core positions as reverse GDP.

The main idea of reverse GDP is to find the locations
of non-active cores rather than active cores, in a greedy
manner similar to the standard GDP. The steps of reverse
GDP for one iteration are given as follows: First, calculate
the power budget using the QP optimization (11), by assum-
ing all cores are active except for the already located non-
active cores in previous iterations (for initiation, simply
assume all cores are active). Second, among all active cores,
find the one (assume the jth core) with smallest kajpjk1.
This core (the jth core) is the newly located non-active core
in this iteration. At last, calculate the power budget for new
distribution and go to the second step to start the next itera-
tion until sufficient non-active cores are located.

Reverse GDP has lower computing overhead when the
active core ratio is high. For the same 64-core system with
60 active cores, reverse GDP only needs 4 iterations com-
pared to 60 iterations of standard GDP.

4.5.2 Parallel GDP for Parallel Computing

The computing overhead of GDP also grows with core num-
ber. For the system with a large number of cores, we divide
the original system into smaller sub-systems, and find the
active core positions for each sub-system in parallel to reduce
the computing overhead.We call thismethod as parallel GDP.

The main idea of parallel GDP is to divide the original
system into several small sub-systemswithmoderate number
of cores, such that the active cores can be located for each sub-
system with standard GDP process in parallel. Since we only
need to find the sub-optimal active core locations, the bound-
aries of each sub-system can be treated as adiabaticwith toler-
able error loss. The active core number in each sub-system
can be setmanually by assuming uniform active core distribu-
tion or by experience, as long as the total active core number
is met. After all active core positions are located, we compute
the power budget using the original system model (not the
sub-system model anymore). As a result, the impact of the
neighbor sub-systems is also accurately considered in parallel
GDP. Please note that although the final power budget com-
puting step is not a parallel process, it is still very fast because
there is no iteration in this step.

Parallel GDP enables performing GDP even on a system
with large number of cores. For example, if we apply paral-
lel GDP to a 64-core system by dividing the original system
into four 16-core sub-systems, the computing overhead is
similar to applying standard GDP to a 16-core system.

4.6 Guidance on Estimating the Optimality Lower-
Bound of GDP in Steady State

Since GDP provides sub-optimal solution, one natural ques-
tion is how optimal is the GDP solution. However, deriving
a theoretical optimality lower-bound for GDP is extremely

difficult because the optimality of GDP differs with system
core number, active core number, and the system thermal
model (Amatrix, etc.). Even checking the optimality of GDP
is challenging because of the inability to obtain the optimal
solution for just moderate sized multi-core systems: the
computing complexity is so high that we cannot get the
optimal solution for the 25-core system with 12 active cores
even after over 12 hours’ computing.

However, we still give a guidance on estimating the lower-
bound of GDP in steady state. This guidance is based on the
observation that the optimality of GDP increases with system
core number n, simply because the active core area mismatch
ratio between the GDP solution and the optimal solution
is smaller with larger system core number n. For example,
finding even one wrong active core position for a 9-core
system can make a relatively large difference in power bud-
get. However, finding even several wrong active core posi-
tions in a 1000-core system is not a big deal in power budget.
As a result, we can seek for the largest difference between the
GDP solution and the optimal solution in systems with small
number of cores. Such difference could be the steady state
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To be specific, for quad-core (2! 2) system in steady
state, the active core distribution given by GDP is absolutely
optimal for any active core numbers. For the 3! 3 core
system, not all GDP solutions are optimal anymore because
GDP is greedy based. Specifically, GDP solutions are non-
optimal for active core number 2, 3, 4, as can be easily
observed in Fig. 7. By comparing the steady state power
budgets given by GDP and the optimal method, we find the
4 active core case has the largest power budget difference
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need to find the sub-optimal active core locations, the bound-
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sub-system model anymore). As a result, the impact of the
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GDP. Please note that although the final power budget com-
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there is no iteration in this step.

Parallel GDP enables performing GDP even on a system
with large number of cores. For example, if we apply paral-
lel GDP to a 64-core system by dividing the original system
into four 16-core sub-systems, the computing overhead is
similar to applying standard GDP to a 16-core system.
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Bound of GDP in Steady State

Since GDP provides sub-optimal solution, one natural ques-
tion is how optimal is the GDP solution. However, deriving
a theoretical optimality lower-bound for GDP is extremely

difficult because the optimality of GDP differs with system
core number, active core number, and the system thermal
model (Amatrix, etc.). Even checking the optimality of GDP
is challenging because of the inability to obtain the optimal
solution for just moderate sized multi-core systems: the
computing complexity is so high that we cannot get the
optimal solution for the 25-core system with 12 active cores
even after over 12 hours’ computing.

However, we still give a guidance on estimating the lower-
bound of GDP in steady state. This guidance is based on the
observation that the optimality of GDP increases with system
core number n, simply because the active core area mismatch
ratio between the GDP solution and the optimal solution
is smaller with larger system core number n. For example,
finding even one wrong active core position for a 9-core
system can make a relatively large difference in power bud-
get. However, finding even several wrong active core posi-
tions in a 1000-core system is not a big deal in power budget.
As a result, we can seek for the largest difference between the
GDP solution and the optimal solution in systems with small
number of cores. Such difference could be the steady state
optimality lower-bound for systems with different number
of cores sharing the samepackage structure.

To be specific, for quad-core (2! 2) system in steady
state, the active core distribution given by GDP is absolutely
optimal for any active core numbers. For the 3! 3 core
system, not all GDP solutions are optimal anymore because
GDP is greedy based. Specifically, GDP solutions are non-
optimal for active core number 2, 3, 4, as can be easily
observed in Fig. 7. By comparing the steady state power
budgets given by GDP and the optimal method, we find the
4 active core case has the largest power budget difference
(1.5%). Thus, we can take such difference as the optimality
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Runtime Performance Optimization of 3-D
Microprocessors in Dark Silicon
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Abstract—Because the increasing power density is limited by the thermal constraint, multi-core integrated systems have stepped into

the dark silicon era recently, meaning not all parts of the system can be powered on at the same time. Dark silicon effects are

especially severe for 3-D microprocessors due to the even higher power density caused by the stacked structures, which greatly limit

the system performances. In this work, we propose a greedy based core-cache co-optimization algorithm to optimize the performance

of 3-D microprocessors in dark silicon at runtime. The new method determines many runtime settings of the 3-D system on the fly,

including the active core and cache bank positions, active cache bank number, and the voltage/frequency (V/f) level of each active

core, which optimizes the performance of the 3-D microprocessor under thermal constraint. Because the core-cache settings are

co-optimized in the 3-D space and the power budgets are computed dynamically according to the running state of the 3-D

microprocessor, the new method leads to a higher system performance compared with the existing methods. Experiments on two 3-D

microprocessors show the greedy based core-cache co-optimization algorithm outperforms the state-of-the-art 3-D dark silicon

microprocessor performance optimization method by achieving a higher processing throughput with guaranteed thermal safety.

Index Terms—Performance optimization, thermal management, heterogeneous system, 3-D IC, dark silicon.
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1 INTRODUCTION

Three-dimensional (3-D) microprocessors have been pro-
posed to explore the vertical integration potential of the
integrated systems [1]. With stacking multiple dies layer by
layer vertically, 3-D microprocessors achieve better perfor-
mance than traditional 2-D microprocessors in many aspects
including better heterogeneous integration ability, higher
computing density, and shorter interconnection delay [2].
In order to realize the 3-D microprocessor design, several
3-D stacking technologies were introduced including the
through-silicon via (TSV) based stacking, face-to-face (F2F)
bonded stacking, and monolithic 3-D (M3D) technology.
Electronic design automation programs for 3-D systems
were also developed like the thermal modeling [3] and
physical design [4] tools. Some commercial 3-D chips and
prototypes were built recently, such as the AMD Radeon R9
Fury GPU [5] and the 3D-MAPS CPU [6].

The major issue that 3-D structure solves is the memory
wall problem [7], [8], which describes the fact that the long
memory access delay in traditional 2-D microprocessors is
the bottleneck that limits the overall performance of the sys-
tem. There are many 3-D architectures proposed including
the stacking main memory architecture, the stacking cache
architecture, and the stacking cache+core architecture [9].
Among these 3-D architectures, the stacking cache+core
architecture is promising because it resolves the memory

• H. Wang, W. Li, W. Qi, D. Tang, L. Huang, and H. Tang are with
State Key Laboratory of Electronic Thin Films and Integrated Devices,
University of Electronic Science and Technology of China, Chengdu,
610054 China, and also with School of Electronic Science and Engineer-
ing, University of Electronic Science and Technology of China, Chengdu,
610054 China.

(Corresponding author: He Tang).

Fig. 1: The 3-D microprocessor structure with one core layer
and l cache layers connected by TSVs (shown as the vertical
bars). The cores and memory controllers (shown as the gray
squares in the Core layer) are connected by crossbar switch
interconnection.

wall problem between cache and core [10], and a test chip
has been designed and realized as the first fully-functioning
general purpose many-core 3-D processor [6]. The stacking
cache+core 3-D microprocessor structure has one or several
cache memory layers stacked on the top of the core layer, as
shown in Fig. 1. With the reduced interconnection length, 3-
D microprocessors achieve faster cache access speed, which
leads to higher computing throughput compared with the
2-D microprocessors [11].

Despite many advantages, 3-D microprocessors experi-
ence severe thermal induced dark silicon problem. Specif-
ically, Dennard scaling, which states the power density
remains constant with technology scaling and integration,

l One core layer with 
memory controllers (grey 
squares)

l Multiple cache layers
l Vertically connected via 

TSVs
l Vertical thermal coupling is 

significant
l Dark silicon phenomenon is 

significant
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(a) The total power budget of the active cores is low when the active
components cluster together in 3-D space.

44.1473
0

44.1473

0
48.8767

0

0
0

0

65

70

75

80

85

(b) The total power budget of the active cores is high when the active
components are uniformly distributed in 3-D space.

Fig. 2: The impact of the active cache bank and active core locations on the power budgets of the cores tested using the
9-core 3-D microprocessor shown in Fig. 1. In each subfigure, the left image shows the active component distribution (the
active components are in white and the inactive components are in black) and the power budgets (shown as numbers in
the active cores with unit W), the right image shows the temperature distribution with unit °C.
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Fig. 3: The impact of the active cache number on the per-
formance of the 9-core 3-D system. Throughputs (IPS) of
the 3-D system with different number of active cache banks
are plotted by running Swaptions benchmark on 3 active
cores. When the active cache bank number increases, system
throughput will first increase due to the decrease of cache
access latency, but it will decrease later because the heat
generated by the active cache banks forces the active cores
to lower their operating frequencies.

the existing method requires the cache bank and the core
in the same vertical column to be activated at the same
time, which lowers the power budgets of the active cores.
Moreover, this method is based on the static power budget,
which over-constrains the system performance at runtime.

3 MOTIVATION

In this section, we provide an example which motivates this
research work.

In this example, we show two typical active component
distributions of a 9-core 3-D microprocessor in Fig. 2. In
Fig. 2a, the active cores are clustered and the active cache
banks overlap the active cores vertically. Whereas in Fig. 2b,
the active cores and the active cache banks stagger from each
other vertically without forming any clusters. Obviously,
the 3-D microprocessor with the latter active component
distribution has a better heat dissipation condition than
the former one, with two main reasons. First, inside each
layer, the active components in Fig. 2b are more uniformly
distributed without forming large active component clus-
ters. With the uniform distribution, the active cores have

better lateral heat conduction, which leads to higher power
budgets and higher system performance potential. Second,
in Fig. 2b, there is no active cache bank in each vertical
stack with active core. This brings more power budget for
the active core in each vertical stack, which further boosts
the potential system performance. Experimentally, we have
computed the power budgets of the 3-D microprocessor
with two typical active component distributions in Fig. 2.
Clearly, the 3-D microprocessor with a more uniform active
component distribution in the three-dimensional space has
a higher overall power budget, with the same temperature
threshold as the constraint.

Despite the active component distribution, the active
cache bank number also influences the performance of the
3-D microprocessor, in two opposite directions. For the
influence in one direction, activating more cache banks
enlarges the cache size, which increases the cache hit rate
and improves the system performance. For the influence
in the other direction, activating too many cache banks in
the 3-D system will pose too much thermal pressure on
the active cores, forcing them to lower their V/f levels to
avoid thermal constraint violation. To see the impact of the
active cache number on the system performance, we plot the
throughputs (as measured by instructions per second (IPS))
of the 9-core 3-D microprocessor with different number of
active cache banks in Fig. 3. In the beginning, the system
throughput increases with the active cache bank number,
because more active cache banks bring higher cache hit rate
and reduce the cache access delay. When the active cache
bank number grows beyond 6, activating more cache banks
leads to a throughput decrease. This is because activating
cache banks increases the power consumptions of the cache
layers, the active cores have to reduce their power con-
sumption by lowering their performances through dynamic
voltage and frequency scaling (DVFS), in order to keep the
3-D microprocessor thermally safe.

As discussed above, the performance of the 3-D mi-
croprocessor in dark silicon is affected by many runtime
parameters in a complex way. These parameters include
the distribution of the active components in 3-D space, the
active cache bank number, and the V/f levels of the active
cores. In this work, we provide a systematic method named
the greedy based core-cache co-optimization algorithm to
optimize the performance of the 3-D microprocessor by
finding the optimal runtime parameters at runtime.
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active components are in white and the inactive components are in black) and the power budgets (shown as numbers in
the active cores with unit W), the right image shows the temperature distribution with unit °C.
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Fig. 3: The impact of the active cache number on the per-
formance of the 9-core 3-D system. Throughputs (IPS) of
the 3-D system with different number of active cache banks
are plotted by running Swaptions benchmark on 3 active
cores. When the active cache bank number increases, system
throughput will first increase due to the decrease of cache
access latency, but it will decrease later because the heat
generated by the active cache banks forces the active cores
to lower their operating frequencies.

the existing method requires the cache bank and the core
in the same vertical column to be activated at the same
time, which lowers the power budgets of the active cores.
Moreover, this method is based on the static power budget,
which over-constrains the system performance at runtime.

3 MOTIVATION

In this section, we provide an example which motivates this
research work.

In this example, we show two typical active component
distributions of a 9-core 3-D microprocessor in Fig. 2. In
Fig. 2a, the active cores are clustered and the active cache
banks overlap the active cores vertically. Whereas in Fig. 2b,
the active cores and the active cache banks stagger from each
other vertically without forming any clusters. Obviously,
the 3-D microprocessor with the latter active component
distribution has a better heat dissipation condition than
the former one, with two main reasons. First, inside each
layer, the active components in Fig. 2b are more uniformly
distributed without forming large active component clus-
ters. With the uniform distribution, the active cores have

better lateral heat conduction, which leads to higher power
budgets and higher system performance potential. Second,
in Fig. 2b, there is no active cache bank in each vertical
stack with active core. This brings more power budget for
the active core in each vertical stack, which further boosts
the potential system performance. Experimentally, we have
computed the power budgets of the 3-D microprocessor
with two typical active component distributions in Fig. 2.
Clearly, the 3-D microprocessor with a more uniform active
component distribution in the three-dimensional space has
a higher overall power budget, with the same temperature
threshold as the constraint.

Despite the active component distribution, the active
cache bank number also influences the performance of the
3-D microprocessor, in two opposite directions. For the
influence in one direction, activating more cache banks
enlarges the cache size, which increases the cache hit rate
and improves the system performance. For the influence
in the other direction, activating too many cache banks in
the 3-D system will pose too much thermal pressure on
the active cores, forcing them to lower their V/f levels to
avoid thermal constraint violation. To see the impact of the
active cache number on the system performance, we plot the
throughputs (as measured by instructions per second (IPS))
of the 9-core 3-D microprocessor with different number of
active cache banks in Fig. 3. In the beginning, the system
throughput increases with the active cache bank number,
because more active cache banks bring higher cache hit rate
and reduce the cache access delay. When the active cache
bank number grows beyond 6, activating more cache banks
leads to a throughput decrease. This is because activating
cache banks increases the power consumptions of the cache
layers, the active cores have to reduce their power con-
sumption by lowering their performances through dynamic
voltage and frequency scaling (DVFS), in order to keep the
3-D microprocessor thermally safe.

As discussed above, the performance of the 3-D mi-
croprocessor in dark silicon is affected by many runtime
parameters in a complex way. These parameters include
the distribution of the active components in 3-D space, the
active cache bank number, and the V/f levels of the active
cores. In this work, we provide a systematic method named
the greedy based core-cache co-optimization algorithm to
optimize the performance of the 3-D microprocessor by
finding the optimal runtime parameters at runtime.
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Fig. 3: The impact of the active cache number on the per-
formance of the 9-core 3-D system. Throughputs (IPS) of
the 3-D system with different number of active cache banks
are plotted by running Swaptions benchmark on 3 active
cores. When the active cache bank number increases, system
throughput will first increase due to the decrease of cache
access latency, but it will decrease later because the heat
generated by the active cache banks forces the active cores
to lower their operating frequencies.

the existing method requires the cache bank and the core
in the same vertical column to be activated at the same
time, which lowers the power budgets of the active cores.
Moreover, this method is based on the static power budget,
which over-constrains the system performance at runtime.

3 MOTIVATION

In this section, we provide an example which motivates this
research work.

In this example, we show two typical active component
distributions of a 9-core 3-D microprocessor in Fig. 2. In
Fig. 2a, the active cores are clustered and the active cache
banks overlap the active cores vertically. Whereas in Fig. 2b,
the active cores and the active cache banks stagger from each
other vertically without forming any clusters. Obviously,
the 3-D microprocessor with the latter active component
distribution has a better heat dissipation condition than
the former one, with two main reasons. First, inside each
layer, the active components in Fig. 2b are more uniformly
distributed without forming large active component clus-
ters. With the uniform distribution, the active cores have

better lateral heat conduction, which leads to higher power
budgets and higher system performance potential. Second,
in Fig. 2b, there is no active cache bank in each vertical
stack with active core. This brings more power budget for
the active core in each vertical stack, which further boosts
the potential system performance. Experimentally, we have
computed the power budgets of the 3-D microprocessor
with two typical active component distributions in Fig. 2.
Clearly, the 3-D microprocessor with a more uniform active
component distribution in the three-dimensional space has
a higher overall power budget, with the same temperature
threshold as the constraint.

Despite the active component distribution, the active
cache bank number also influences the performance of the
3-D microprocessor, in two opposite directions. For the
influence in one direction, activating more cache banks
enlarges the cache size, which increases the cache hit rate
and improves the system performance. For the influence
in the other direction, activating too many cache banks in
the 3-D system will pose too much thermal pressure on
the active cores, forcing them to lower their V/f levels to
avoid thermal constraint violation. To see the impact of the
active cache number on the system performance, we plot the
throughputs (as measured by instructions per second (IPS))
of the 9-core 3-D microprocessor with different number of
active cache banks in Fig. 3. In the beginning, the system
throughput increases with the active cache bank number,
because more active cache banks bring higher cache hit rate
and reduce the cache access delay. When the active cache
bank number grows beyond 6, activating more cache banks
leads to a throughput decrease. This is because activating
cache banks increases the power consumptions of the cache
layers, the active cores have to reduce their power con-
sumption by lowering their performances through dynamic
voltage and frequency scaling (DVFS), in order to keep the
3-D microprocessor thermally safe.

As discussed above, the performance of the 3-D mi-
croprocessor in dark silicon is affected by many runtime
parameters in a complex way. These parameters include
the distribution of the active components in 3-D space, the
active cache bank number, and the V/f levels of the active
cores. In this work, we provide a systematic method named
the greedy based core-cache co-optimization algorithm to
optimize the performance of the 3-D microprocessor by
finding the optimal runtime parameters at runtime.

• Uniform active distribution in 3-D (Fig (b)) has higher power 
budget and performance

• More active cache banks do not mean 
higher performance!
• More banks -> more cache power -> suppress 

core frequency/performance
• Larger cache size may have marginal memory 

benefit when a proper cache size is reached

• Strategy: find the proper cache size with optimal active 
core/cache distribution to optimize performance!
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Fig. 11: The performance comparison results between the new method and the existing method on the 16-core system with
different benchmarks.

method). Both methods are applied to the same 3-D micro-
processors with the same experimental settings as shown
previously in Section 6.1.

We will first compare the performances of the 3-D micro-
processors optimized by the new method and the existing
method. Then, we will look into the transient temperatures
of the 3-D microprocessors managed by the two methods,
which provide explanations and experimental supports to
the performance comparison results. Lastly, the computing
overheads of the two methods are compared and analyzed.

6.3.1 System performance comparison and analysis

In this comparison, we run multiple tests with each PARSEC
benchmark by changing the active core number from 1 to
nc, in order to consider all dark silicon conditions. For each
test, the PARSEC benchmark is applied to all active cores,
then we collect the average instruction per second (IPS) of
the 3-D microprocessor as the performance measurement. In
order to analyze the performance results, we also record the
power consumptions of the cores and caches, for each test.

The system performance comparison results on the 9-
core microprocessor and the 16-core microprocessor are
shown in Fig. 10 and Fig. 11, respectively, for different
benchmarks and different active core numbers. For all test
cases, the 3-D microprocessor managed by the new method
has a higher system performance than the one optimized by
the existing method.

The new method leads to a better system performance
mainly because it brings a higher power budget than the
existing method, as revealed by the power consumption
comparison in Fig. 10 and Fig. 11, thanks to two good
properties of the new method. First, the new method is
able to perform the joint optimization of the active core
and active cache bank distributions. Whereas the existing
method only optimizes the active core distribution in a

heuristic way. With the joint optimization, the true power
budget potential of the 3-D system is released with the
same thermal constraint. Second, the new method is able
to compute the power budget at runtime according to the
current active component distribution. In contrast, the exist-
ing method relies on the static power budget computed off-
line. Because such static power budget cannot be updated
at runtime, it is computed in a pessimistic way so that the
absolute thermal safety is guaranteed for any situation [13],
[14]. However, such power budget is too low for most of the
running conditions, which greatly limits the performance of
the 3-D microprocessor.

6.3.2 Transient temperature comparison and analysis

The temperature behavior of the 3-D microprocessor is
also important in order to justify both the performance
optimization ability and the system reliability consideration
of a performance optimization method. To be specific, with
a good method, the temperature of the 3-D microprocessor
shall satisfy the following two conditions at the same time.
First, the average temperature of the 3-D microprocessor
should be high. This means the power budget provided
by the optimization method is sufficient to achieve high
system performance. Second, the highest temperature of
the 3-D microprocessor should always be lower than the
temperature threshold. This indicates the reliability of the 3-
D microprocessor is ensured when the system performance
is being optimized.

Due to the reasons above, we have performed a transient
temperature comparison to analyze the differences between
the new method and the existing method. In this compari-
son, the same set of benchmarks is used for both methods.

We plot the transient temperature comparison results
with the 9-core microprocessor and the 16-core micropro-
cessor in Fig. 12. We see that the average temperature of the
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shows the active component distribution (the active components are in white and the inactive components are in black) and
the power budgets (shown as numbers in the active cores with unit W), the right image shows the temperature distribution
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The IPS is measured as the average IPS of one core running
the specific application.

7 LIMITATIONS AND FUTURE WORK

Although the new method can be applied to the widely
adopted 3-D system composed of one core layer and mul-
tiple cache layers, it is not compatible with the 3-D system
with cores and caches mixed in the same layer. We plan
to develop the performance optimization algorithm for the
latter 3-D system as our future work.

Moreover, the new method in current form cannot be
applied to the many-core 3-D microprocessors, mainly be-
cause of the following two problems. First, the computing
overhead grows with the core and cache numbers as shown
in the time complexity analysis, making the overhead un-
acceptable for the many-core 3-D systems. Second, the new
method assumes all cache banks can be accessed with the
same latency for each active core and gem5 is directly used
for architectural modeling, because the memory controllers
are connected with the cores using crossbar switch in the
core layer. However, the many-core systems are usually

Non-Uniform Cache Access (NUCA) based, meaning the
cache access latency depends on the locations of the core
and cache bank [34], [35] which are connected by a 3-D
NoC. As a result, a future research direction is to develop
a distributed runtime performance optimization algorithm
with NUCA consideration and new architectural model for
the many-core 3-D systems.

8 CONCLUSION

In this article, we have presented a greedy based core-cache
co-optimization algorithm to optimize the performance of
3-D microprocessors in dark silicon at runtime. With a
greedy based joint optimization scheme, the new method
determines a sub-optimal distribution of active cores and
active cache banks in the three-dimensional space across
different die layers. The active cache bank number is ad-
justed dynamically by the new method to improve the
overall system performance. The V/f levels of the active
cores are also tuned by the new method according to the
power budgets computed at runtime under the optimized
active component distributions. The experiments show that
the new greedy based core-cache co-optimization algorithm
outperforms the state-of-the-art performance optimization
method for 3-D microprocessors in dark silicon with a
higher system throughput and guaranteed system thermal
safety.
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Fig. 11: The performance comparison results between the new method and the existing method on the 16-core system with
different benchmarks.

method). Both methods are applied to the same 3-D micro-
processors with the same experimental settings as shown
previously in Section 6.1.

We will first compare the performances of the 3-D micro-
processors optimized by the new method and the existing
method. Then, we will look into the transient temperatures
of the 3-D microprocessors managed by the two methods,
which provide explanations and experimental supports to
the performance comparison results. Lastly, the computing
overheads of the two methods are compared and analyzed.

6.3.1 System performance comparison and analysis

In this comparison, we run multiple tests with each PARSEC
benchmark by changing the active core number from 1 to
nc, in order to consider all dark silicon conditions. For each
test, the PARSEC benchmark is applied to all active cores,
then we collect the average instruction per second (IPS) of
the 3-D microprocessor as the performance measurement. In
order to analyze the performance results, we also record the
power consumptions of the cores and caches, for each test.

The system performance comparison results on the 9-
core microprocessor and the 16-core microprocessor are
shown in Fig. 10 and Fig. 11, respectively, for different
benchmarks and different active core numbers. For all test
cases, the 3-D microprocessor managed by the new method
has a higher system performance than the one optimized by
the existing method.

The new method leads to a better system performance
mainly because it brings a higher power budget than the
existing method, as revealed by the power consumption
comparison in Fig. 10 and Fig. 11, thanks to two good
properties of the new method. First, the new method is
able to perform the joint optimization of the active core
and active cache bank distributions. Whereas the existing
method only optimizes the active core distribution in a

heuristic way. With the joint optimization, the true power
budget potential of the 3-D system is released with the
same thermal constraint. Second, the new method is able
to compute the power budget at runtime according to the
current active component distribution. In contrast, the exist-
ing method relies on the static power budget computed off-
line. Because such static power budget cannot be updated
at runtime, it is computed in a pessimistic way so that the
absolute thermal safety is guaranteed for any situation [13],
[14]. However, such power budget is too low for most of the
running conditions, which greatly limits the performance of
the 3-D microprocessor.

6.3.2 Transient temperature comparison and analysis

The temperature behavior of the 3-D microprocessor is
also important in order to justify both the performance
optimization ability and the system reliability consideration
of a performance optimization method. To be specific, with
a good method, the temperature of the 3-D microprocessor
shall satisfy the following two conditions at the same time.
First, the average temperature of the 3-D microprocessor
should be high. This means the power budget provided
by the optimization method is sufficient to achieve high
system performance. Second, the highest temperature of
the 3-D microprocessor should always be lower than the
temperature threshold. This indicates the reliability of the 3-
D microprocessor is ensured when the system performance
is being optimized.

Due to the reasons above, we have performed a transient
temperature comparison to analyze the differences between
the new method and the existing method. In this compari-
son, the same set of benchmarks is used for both methods.

We plot the transient temperature comparison results
with the 9-core microprocessor and the 16-core micropro-
cessor in Fig. 12. We see that the average temperature of the

• Proper cache size and optimal active core/cache distribution found
• Higher power budget compared with existing

• Higher performance achieved on both computing intensive 
(swaptions) and memory intensive (canneal) benchmarks 

cannealswaptions
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