
1

Hierarchical Dynamic Thermal Management Method
for High-Performance Many-Core Microprocessors

HAI WANG and JIAN MA, University of Electronic Science and Technology of China
SHELDON X.-D. TAN, University of California at Riverside
CHI ZHANG and HE TANG, University of Electronic Science and Technology of China
KEHENG HUANG and ZHENGHONG ZHANG, Southwest China Research Institute
of Electronic Equipment

It is challenging to manage the thermal behavior of many-core microprocessors while still keeping them
running at high performance since the control complexity increases as the core number increases. In this
article, a novel hierarchical dynamic thermal management method is proposed to overcome this challenge.
The new method employs model predictive control (MPC) with task migration and a DVFS scheme to ensure
smooth control behavior and negligible computing performance sacrifice. In order to be scalable to many-
core systems, the hierarchical control scheme is designed with two levels. At the lower level, the cores are
spatially clustered into blocks, and local task migration is used to match current power distribution with the
optimal distribution calculated by MPC. At the upper level, global task migration is used with the unmatched
powers from the lower level. A modified iterative minimum cut algorithm is used to assist the task migration
decision making if the power number is large at the upper level. Finally, DVFS is applied to regulate the
remaining unmatched powers. Experiments show that the new method outperforms existing methods and
is very scalable to manage many-core microprocessors with small performance degradation.

CCS Concepts: � Hardware → Temperature control

Additional Key Words and Phrases: Dynamic thermal management, many-core microprocessor, model
predictive control, DVFS, task migration

ACM Reference Format:
Hai Wang, Jian Ma, Sheldon X.-D. Tan, Chi Zhang, He Tang, Keheng Huang, and Zhenghong Zhang. 2016.
Hierarchical dynamic thermal management method for high-performance many-core microprocessors. ACM
Trans. Des. Autom. Electron. Syst. 22, 1, Article 1 (July 2016), 21 pages.
DOI: http://dx.doi.org/10.1145/2891409

This work is supported in part by the National Natural Science Foundation of China under Grant No.
61404024; in part by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State
Education Ministry; in part by the Open Foundation of State Key Laboratory of Electronic Thin Films
and Integrated Devices under Grant No. KFJJ201409; in part by the National Science Foundation (NSF)
under Grant No. CCF-1255899; in part by the Semiconductor Research Corporation (SRC) under Grant No.
2013-TJ-2417; and in part by the National Natural Science Foundation of China under Grant No. 61204031.
Authors’ addresses: H. Wang, J. Ma, C. Zhang, and H. Tang, School of Microelectronics and Solid-State
Electronics, University of Electronic Science and Technology of China, No.4, Sec. 2, North Jianshe Rd.,
Chengdu 610054, China; emails: wanghai@uestc.edu.cn, majian@std.uestc.edu.cn, zhangc@uestc.edu.cn,
tanghe@uestc.edu.cn; S. X.-D. Tan, Department of Electrical and Computer Engineering, University of Cal-
ifornia at Riverside, 900 University Ave., Riverside, California 92521; email: stan@ece.ucr.edu; K. Huang
and Z. Zhang, Southwest China Research Institute of Electronic Equipment, No. 496 West Yingkang Rd.,
Chengdu 610036, China; emails: {39774128, 1274006713}@qq.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1084-4309/2016/07-ART1 $15.00
DOI: http://dx.doi.org/10.1145/2891409

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

http://dx.doi.org/10.1145/2891409
http://dx.doi.org/10.1145/2891409
Hai Wang

1:2 H. Wang et al.

1. INTRODUCTION

Extremely high operating temperatures have negative effects on the reliability of
a microprocessor. The increasing power density and spatial power variation in the
new-generation high-performance multi/many-core microprocessors introduce severe
local hot spot problems, resulting in performance degradation, high cooling costs, and
serious reliability issues. Finding economical and efficient methods to solve the high
temperature issue and improve both performance and reliability for multi/many-core
microprocessors remains a challenging task [Brooks et al. 2007].

The dynamic thermal management (DTM) method is one effective technique to im-
prove the thermally related performance of microprocessors [Donald and Martonosi
2006]. It controls the running behavior of the microprocessor to make sure its temper-
ature is within the safe range while keeping its computing performance at a high level.
DTM is usually performed by two categories of methods: task migration and DVFS.
The task migration method switches tasks among different cores in multi/many-core
microprocessors to lower the peak temperature of the chip [Powell et al. 2004; Ge et al.
2010; Chantem et al. 2011; Liu et al. 2012; Ayoub and Rosing 2009; Ebi et al. 2009] and
is also used to lower the energy consumption in heterogenous multicore systems [Cong
and Yuan 2012]. Task migration usually leads to high throughput of the system since
all cores are running at the maximum speed. But it may suffer from a high average
temperature problem without any other DTM methods being involved.

The DVFS method [Skadron et al. 2003; Jayaseelan and Mitra 2009; Mutapcic et al.
2009] controls voltage and operating frequency speed to adjust the heat dissipation of
the chip. Recently, DVFS was also used in the dark silicon scenario, which determines
the V/f levels for dark silicon chips with temperature as the constraint [Khdr et al.
2015; Muthukaruppan et al. 2013]. DVFS is able to guarantee the thermal safety of
the chip and save energy of the chip, but computing performance of the microprocessor
is sacrificed due to the frequency scaling.

In order to guide the DVFS and/or task migration, a control scheme is usually em-
ployed by DTM methods except for experience-based or heuristic-based ones. The con-
troller uses a thermal model, thermal sensor information, and so forth and outputs
the action guidance (e.g., how much frequency should be adjusted for DVFS) for DTM
techniques. Many DTM methods are based on traditional control methods [Kadin et al.
2009], but these methods do not suit very well multi/many-core thermal systems due to
their complex multimodal dynamics [Bartolini et al. 2013]. Recently, model predictive
control (MPC) was introduced in DTM [Zanini et al. 2009; Wang et al. 2009; Bartolini
et al. 2013]. It uses the thermal model of the microprocessor and outputs management
suggestions on the power side. Since it makes predictions on the thermal behavior to
enhance control efficiency, it is able to provide more accurate and effective management
suggestions. Significant throughput improvement is reported by using MPC compared
with traditional control methods [Bartolini et al. 2013].

Combining MPC with both DVFS and task migration may take the advantages from
all three methods: the high quality control from MPC, good computing performance
from task migration, and guaranteed thermal safety from DVFS. There are a number
of works that combine two techniques out of the three. Specifically, works that combine
task migration and DVFS include the experience-based method [Brooks and Martonosi
2001], the hybrid method that optimizes performance [Hanumaiah et al. 2011], and the
hybrid method that optimizes energy consumption [Hanumaiah and Vrudhula 2014;
Tan et al. 2015]. Works that contain both MPC and DVFS are presented in Zanini et al.
[2009], Wang et al. [2009], and Bartolini et al. [2013]. However, combining MPC with
task migration is much harder than combining MPC with DVFS. Recently, a work that
combines all three methods was proposed [Ma et al. 2014]. However, this method is

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:3

only applicable to multicore microprocessors due to the high overhead introduced in
integrating MPC and task migration, especially for many-core systems.

In this article, a new hierarchical dynamic thermal management method is pro-
posed for high-performance many-core microprocessors. The new method uses model
predictive control to guide the management process with both task migration and
DVFS. In order to solve the scalability problem of performing MPC-based task migra-
tion on many-core systems, the new method makes the task migration decision at two
levels. At the lower level, spatially adjacent cores are clustered into blocks, bipartite
matching is performed on the powers of cores inside each block to make the in-block
migration decision, and the unmatched powers are collected at the upper level for the
second-round-migration decision making. A modified iterative minimum cut algorithm
is introduced to speed up the decision-making process at the upper level. The new hier-
archical method is highly scalable for many-core microprocessors with little overhead
and is able to maintain the high performance of the chip without violating the thermal
constraint.

2. MODEL-PREDICTIVE-CONTROL-BASED DYNAMIC THERMAL MANAGEMENT

In this section, we will introduce the MPC-based DTM method. The thermal model
integrated in MPC is presented first in Section 2.1. How to compute the desired power
using MPC in order to guide the DTM process is given next in Section 2.2. Finally,
Section 2.3 shows the steps to perform task migration and DVFS based on the desired
power from MPC.

2.1. Thermal Model of the Microprocessor

Due to the well-known duality between the thermal system and electrical circuit sys-
tem, we can build the thermal model of the microprocessor using thermal equivalent
resistors (thermal resistors), thermal equivalent capacitance (thermal capacitors), and
thermal equivalent independent current and voltage sources. As a result, similar to the
electrical system, the thermal model of a microprocessor with l cores can be expressed
as ordinary differential equations, such as:

GT (t) + CṪ (t) = Bc P(t),
Y (t) = LT (t),

(1)

where T (t) ∈ R
n is the thermal vector representing temperatures of n blocks of the

processor, which includes l cores (with l < n) and boundary condition nodes and nodes
for package components; G ∈ R

n×n includes thermal resistance information; C ∈ R
n×n

includes thermal capacitance information; Bc ∈ R
n×l contains the power injection topol-

ogy information; P(t) ∈ R
l is the power vector with power dissipations of l cores at time

k, and is the input of the model; Y (t) is the thermal vector with temperature infor-
mation of l cores, and is the output of the model; and L ∈ R

l×n is the output selection
matrix, which selects the l core temperatures from T (t).

In order to analyze the thermal system, the original ordinary differential equation
(Equation (1)) in continuous time is discretized into the following difference equation
by using Eular’s method or other numerical integration methods as

T (k + 1) = AT (k) + BdP(k),
Y (k) = LT (k),

(2)

where the variables T (k), P(k), and Y (k) are the discretized versions of T (t), P(t), and
Y (t) in Equation (1), respectively, and A and Bd are formulated using G, C, and Bc,
according to the specific numerical integration method used to discretize Equation (1).

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:4 H. Wang et al.

For general purposes, the thermal model in Equation (2) is used to compute the core
temperatures1 of the chip (Y (k) as the output) by feeding in the power consumption of
the power unites of the chip (P(k) as the input).

2.2. Desired Power Computing Using Model Predictive Control

Section 2.1 has shown that by using the given power input P(k), the core temperatures
of the chip Y (k) can be computed with the thermal model in Equation (2), which is suffi-
cient for thermal simulation and estimation. For DTM problems, computing the desired
power with a given temperature is also important because DTM needs to operate on the
power side to manage the temperature. Sometimes, the steady-state thermal model,
which can be obtained by eliminating the capacitance term from Equation (1), is used to
compute the power with the given temperature information, due to its simplicity. How-
ever, DTM based on the steady-state thermal model will ignore the current thermal
state, which is important when making DTM decisions. It also assumes temperature
and power dissipation to be roughly steady, which harms DTM effectiveness. In order to
mitigate this problem, the transient thermal model in Equation (1) (or the discretized
form in Equation (2)) is used in a feedback control scheme or optimization formulation
for better power computation in DTM decision making. Although this method is able
to take the current thermal state into consideration and handle transient thermal and
power effects, the power it computes still cannot lead to a smooth thermal control. This
is mainly because this method lacks the ability to look into the future and thus can
only obtain the on-step optimal power for thermal control. In this article, we use the
model predictive control (MPC)-based power computation method, which extends the
transient thermal model in Equation (2) into the predictive form with the ability to look
into the future and compute the future-aware desired power for smooth and accurate
thermal management.

By using a system model in the form of Equation (2), MPC is able to calculate the
input adjustment needed in order to track a user-defined output. In order to maximize
the performance of the processer under a thermal constraint, the highest temperature
allowed (called ceiling temperature) for each core, Ymax, is usually provided as the
user-defined output to be tracked.2

First, we define the difference of the state and input variables as

�T (k) = T (k) − T (k − 1),
�P(k) = P(k) − P(k − 1).

(3)

Taking the difference of the adjacent two steps of Equation (2), there is

�T (k + 1) = A�T (k) + Bd�P(k),
Y (k + 1) − Y (k) = LA�T (k) + LBd�P(k).

(4)

Introducing a new variable,

T̂ (k) =
[

�T (k)
Y (k)

]
,

1Temperatures of other blocks can be computed by simply modifying L. Fine-grained temperature calculation
(e.g., temperatures of functional blocks) is also possible by formulating a larger model, which leads to longer
computing time.
2The temperature ceiling can be adjusted according to real-world applications; it can be also slightly lower
than the highest temperature allowed for absolute safety considerations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:5

we can rewrite Equation (4) into the following augmented model:

T̂ (k + 1) = ÂT̂ (k) + B̂�P(k),

Y (k) = L̂T̂ (k),
(5)

where

Â =
[

A 0m
LA I

]
, B̂ =

[
Bd

LBd

]
,

L̂ = [
0m I

]
, T̂ (k) =

[
�T (k)
Y (k)

]
,

with 0m as a matrix with all zero elements with suitable size.
So far, we have obtained the connection between the power input difference and

the output core temperatures in Equation (5). Next, the power input difference needs
to be determined given the desired ceiling temperatures of cores. Assume the ceiling
temperatures of cores over several time steps into the future are given, and written in
a vector form as

Yceil = [
Y T

max, Y T
max, . . . , Y T

max

]T ∈ R
mNp×1.

In this vector, Ymax ∈ R
m×1 contains the ceiling temperatures of each core. Here we

assume that the ceiling temperature does not change over time, which usually fits the
real-world situation. Please note that this is not a limitation of the new method. Np
stands for a time frame from current to the Np steps into the future, and is called
the prediction horizon. In order to keep the core temperatures tracking the ceiling
temperature in the prediction horizon, at a time k, the future control trajectory (which
is actually unknown and needs to be computed in the end) is introduced as

�Pk = [�P(k),�P(k + 1), . . . ,�P(k + Nc − 1)]T ,

where Nc is called the control horizon. The prediction of core temperatures is defined
as

Yk = [Y (k + 1|k)T , Y (k + 2|k)T , . . . , Y (k + Np|k)T]T ,

where Y (k + j|k) is the predicted core temperatures at time k + j using information of
current time k. Yk can be calculated assuming �Pk is known, using

Yk = V T̂ (k) + ��Pk, (6)

where V and � are shown in Equation (7) as

V =

⎡
⎢⎢⎢⎣

L̂Â
L̂Â2

...
L̂ÂNp

⎤
⎥⎥⎥⎦ ,� =

⎡
⎢⎢⎢⎢⎢⎣

L̂B̂ 0 0 · · · 0
L̂ÂB̂ L̂B̂ 0 · · · 0
L̂Â2 B̂ L̂ÂB̂ L̂B̂ · · · 0

...
...

...
. . .

...
L̂ÂNp−1 B̂ L̂ÂNp−2 B̂ L̂ÂNp−3 B̂ · · · L̂ÂNp−Nc B̂

⎤
⎥⎥⎥⎥⎥⎦

. (7)

Next, we would like to calculate the power, which minimizes the difference between
core temperatures Yk generated by such power and the desired ceiling temperatures
Yceil given by the user. We can first introduce the measurement of such difference
as (Yceil − Yk)T (Yceil − Yk), and the optimal power distribution is the one leading to
Yk = Yceil. In addition, for practical considerations, we prefer the power distribution not
to change drastically. So the extra tuning term �PT

k R�Pk is added to (Yceil−Yk)T (Yceil−
Yk), which forms

F = (Yceil − Yk)T (Yceil − Yk) + �PT
k R�Pk (8)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:6 H. Wang et al.

as the final function to be minimized over the variable �Pk. R = rINc×Nc is the tuning
matrix with r as the tuning parameter, which determines the weight between the two
terms, and can be fine-tuned through experiment according to different numbers of
cores. Guidance and examples of how to tune r are provided in Section 4. Also note that
Yk is a function of the unknown variable �Pk.

Next, optimization is performed to minimize Equation (8) by taking the first deriva-
tive of Equation (8) with respect to �Pk and making it equal to zero. The solution of
�Pk is

�Pk = (�T � + R)−1�T (Yceil − V T̂ (k)). (9)

At each MPC time k, we only use the first computed control signal �P(k) from
Equation (9) and update the power distribution as

P̄(k) ← P(k) + �P(k), (10)

where P̄(k) is the updated power distribution. The resulting temperature Y (k) would
track the desired ceiling temperature with the updated power input. In other words,
the updated power input is the highest power that can be reached without violating
the temperature requirements.

2.3. Task Migration and DVFS Based on Desired Power

Next, dynamic thermal management can be performed with the desired power dis-
tribution of cores provided by MPC in Equation (10). DVFS can be integrated with
MPC easily by adjusting the frequency and voltage level of each core to match the de-
sired power distribution from MPC. However, DVFS may lead to dramatic performance
degradation of thhe microprocessor. The basic reason is that DVFS can only lower the
power of the core, but it is not able to increase the power if the core is already at its
highest frequency and voltage level, for example, if the load currently running at core
i consumes power pi with the highest voltage level and frequency speed, while MPC
suggests this core consumes power p̄i with p̄i > pi. In this case, nothing can be done
by DVFS at the ith core. But at the same time, there may exist a jth core consuming
pj ≈ p̄i, which must be scaled to a lower power (e.g., equal to pi) by DVFS in order to
satisfy the thermal constraint. This leads to performance degradation of the jth core
and will be revealed as lower throughput.

Actually, it is obvious that if we simply swap the loads at the jth core and the ith core
in this example, no DVFS will be executed and the performance of the microprocessor
will not be harmed. As a result, task migration can be performed first by matching sim-
ilar valued elements in P and P̄ into pairs and making the migration action according
to the matched pairs. This matching process is an assignment problem, and it can be
modeled as a bipartite graph and solved as a bipartite matching problem. The corre-
sponding bipartite graph can be formulated as G = (L, R, E), where L = {p1, p2, . . . , pl},
R = { p̄1, p̄2, . . . , p̄l}, and E contains partial edges between vertices in L and R: we de-
fine a threshold eth, and only the edges (pi, p̄j) satisfying |pi − p̄j | < eth are kept in E
with weights eij = |pi − p̄j |. The bipartite matching problem can be solved using the
Hungarian algorithm, and the matched pairs are found, which means task migration
can be performed according to the pairs (if (pi, p̄j) is one of the matched pairs, then the
load at the ith core will be moved to the jth core). There may exist some unmatched
powers left after the bipartite match, which will be processed by DVFS as introduced
later.

The value of eth determines the number of unmatched powers after bipartite match
and also controls the risk of temperature violation: a larger value of eth results in fewer
unmatched powers, fewer DVFS actions, and higher risk and severity of thermal viola-
tion, but higher performance of the chip. The proper value of eth should be determined

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:7

Fig. 1. An example showing the weighted bipartite matching.

as the one leading to acceptable thermal violation risk and severity. eth needs to be
changed for different CPU architectures with different numbers of cores, but it is not
necessarily to be changed at runtime for different workloads. Details about how to
adjust eth are discussed in Section 4.

Another important function of eth is to eliminate unnecessary task migrations when
there are many low-power tasks. Consider the extreme situation that all tasks are
low power tasks, which will result in low temperatures for all cores. In such case, we
should not perform any task migration and DVFS. If we set the proper eth, then no
task migration will be performed (which is correct), as the bipartite graph has no edge
at all. This is because elements in P all have small values, while elements in P̄ all
have large values (as suggested by MPC in order to track the ceiling temperature), so
eth will prevent them from connecting to each other, thus avoiding unnecessary task
migrations.

One example of the bipartite matching is shown in Figure 1, with Figure 1(a) showing
the weighted bipartite graph with threshold eth = 3, and Figure 1(b) demonstrating
the matched pairs (p2, p̄1), (p3, p̄2), and (p4, p̄3).

3. HIERARCHICAL DYNAMIC THERMAL MANAGEMENT METHOD

In this section, a new hierarchical DTM method is proposed for high-performance
many-core microprocessors. The new technique is based on model predictive control
and uses both task migration and DVFS.

It is challenging to perform MPC-based task migration on many-core microproces-
sors, because when the number of cores becomes large, a lot of time is spent in com-
puting the migration decision making (can be formulated as bipartite matching) using
the Hungarian algorithm with complexity of O(n3). In order to handle the many-core
system that has a large core number, the new technique clusters the cores into blocks
and makes task migration decision on two levels: within block (lower level) and among
blocks (higher level). Bipartite matching of current powers and desired powers is first
performed at the lower level inside each block. There are unmatched powers from each
block in the lower level, and they are collected to form the upper level (among blocks).
At the upper level, an iterative minimum cut algorithm modified from Fidducia and
Mattheyses [1982] is used to divide the upper level into “optimal” blocks, and bipartite
matching is performed inside each “optimal” block. The final unmatched powers from

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:8 H. Wang et al.

Fig. 2. Vertical view of the 100-core microprocessor used as an example to show the hierarchical algorithm.

the upper level are processed using the DVFS method to guarantee the absolute safety
in temperature. The hierarchical algorithm relaxes the computational cost by reduc-
ing the size of each bipartite matching and performing the matching in parallel. As a
result, it is scalable to many-core systems.

3.1. Lower-Level Task Migration Within Blocks

First, we cluster the cores into blocks. As the first step, we can simply cluster the cores
according to their locations; that is, we simply group the spatially clustered cores into
a block. This lower-level clustering process introduces no overhead at all. We usually
form blocks in square shapes called regular blocks, but rectangular or smaller square-
shaped blocks may appear on the edges, and they are called edge blocks.

Bipartite matching, shown in Section 2.3, is performed inside each block, and this
is called lower-level matching. For each block, computation of the matching can be
assigned to a core inside the block. In the view of the full chip, the lower-level matching
is performed in parallel. As a result, the latency introduced by lower-level matching
is the CPU time used to compute the matching in a regular block (note that all edge
blocks have a smaller size than the regular block, which means their shorter computing
time will not be counted for latency).

The number of cores inside each block can be tuned to achieve a smaller latency of
the whole algorithm: if a large number is chosen here, bipartite matching in the lower
level will take more time, but more matched pairs will be found. This will result in
fewer unmatched pairs to be left to the upper level, causing less processing time at the
upper level.

An example of the lower-level clustering process is shown in Figure 2(a). It is a
100-core microprocessor, and the cores are clustered into four 16-core regular blocks
(labeled as A, B, D, E). Five edge blocks (labeled as C, F, G, H, I) are also introduced
with the number of cores ranging from four to eight. Lower-level bipartite matching
is then performed in each block, with Figure 1 showing the bipartite matching inside
block I of Figure 2(a).

Obviously, it is insufficient to find all matching pairs by only performing the lower-
level matching inside each block. For example, in block I of Figure 2(a), the powers p1
and p̄4 cannot be matched as shown in Figure 1(b). It is also not good to perform DVFS
for unmatched powers in each block at this lower-level stage, because an unmatched

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:9

power in one block may find a good match with another unmatched power from a
different block. This will avoid a lot of unnecessary DVFS actions and minimize the
performance degradation of the chip. As a result, we can collect all the unmatched
powers from all blocks to form the upper level. All the unmatched powers after the
first-level matching in the 100-core example are shown in Figure 2(b), marked in red.

3.2. Higher-Level Task Migration Among Blocks

In the previous subsection, we have clustered the cores into blocks and done bipartite
matching at the lower level inside each block. All the unmatched powers from all blocks
are collected for the upper-level matching.

We want to find all the power pairs that can be matched at the upper level and
perform DVFS only on the final unmatched powers. It appears that we can cluster
the upper-level powers into larger blocks according to their locations, similar to what
we have done at the lower level. Then we can perform bipartite matching inside the
new blocks and form even larger blocks using previously unmatched ones. The area
of the block grows in iteration, until the full chip finally becomes one block. However,
experiments show that only a small ratio (below 25%) of powers at the higher level
can be finally matched, compared with a large ratio (above 60%) of that at the lower
level. Such a small matching ratio will cause the block area to increase very slowly
in iteration. It is even possible that the block area will never grow to the size of the
full chip because there may be a lot of powers that cannot be eventually matched. So
before the block enlarges to the chip size, unmatched powers collected in the block may
already be too many to be processed, due to the large computing cost required.

In order to make the task migration decision efficiently at a higher level, we cluster
the upper-level powers into blocks in another way, using the minimum cut algorithm.
First, we formulate a graph (details will be provided later) using all the upper-level
powers. Then, we use minimum cut algorithm to divide the graph into two groups,
and each group is a new block.3 If the new block size is too large (for the bipartite
matching algorithm), then another minimum cut is performed on this block to half its
size. After the minimum cut, bipartite matching is performed inside each new block.
One important property of the minimum cut is that the connection is weak among the
separated blocks, and the connection is much stronger inside each block. This means
the matching ratio is maximized inside each block. If there are unmatched powers left
after the bipartite matching inside a block, these unmatched powers can also hardly be
matched with powers from other blocks. As a result, another round of even higher-level
matching by collecting all unmatched powers from all upper-level blocks is unnecessary.

Usually, the exact minimum cut algorithm is too expensive to be performed here as
a runtime algorithm. Fortunately, we do not need the optimal cut here, and we can use
the iterative approximation algorithm modified from the one used in network partition
[Fidducia and Mattheyses 1982]. First, we build a new graph Gp = (Vp, Ep) using
all the upper-level powers, where Vp = {p1, p̄1, p2, p̄2, . . . , pm, p̄m}, and Ep contains all
connections of vertices in Vp with weights. The weights are defined as w(pi, p̄j) =
1/|pi − p̄j |, w(pi, pj) = 0, and w(p̄i, p̄j) = 0 for all the i and j. One example of Gp is
shown in Figure 3(a). What we need to solve here is a minimum cut problem on the
graph Gp.

As an iterative algorithm, the first step is to make the initial cut by partitioning Vp
into two subsets Vp1 and Vp2. The cost of the cut is defined as the sum of the weights
on the cut set. An example is given in Figure 3(b), where the initial cut generates two
subsets Vp1 = {Pa, Pb, Pc, P̄a, P̄b, P̄c} and Vp2 = {Pd, Pe, P̄d, P̄e}.

3Cores in this upper-level block are unnecessarily spatially adjacent to each other.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:10 H. Wang et al.

Fig. 3. The higher-level processing example of the hierarchical algorithm on the 100-core microprocessor.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:11

Then, in order to proceed with the iteration by moving the correct vertices from one
subset to the other one, we need to measure the cut cost changes of a moving action. For
each vertex v, we first define I(v) to be the set of edges that connect v and another vertex
in the same subset as v. Similarly, we define E(v) to be the set of edges that connect
v and another vertex in the different subset as v. Take vertex Pa in Figure 3(b) as an
example; I(Pa) = {(Pa, P̄a), (Pa, P̄b), (Pa, P̄c)}, and E(Pa) = {(Pa, P̄d), (Pa, P̄e)}. Note that
here we ignore the edges with 0 weight, such as (Pa, Pb). The following gain function
f (v):

f (v) =
∑

ni∈E(v)

w(ni) −
∑

nj∈I(v)

w(nj) (11)

measures the decrease in cut cost if v is moved to the other subset. In the example, f (Pa)
is calculated as f (Pa) = (1/|Pa − P̄d| + 1/|Pa − P̄e|) − (1/|Pa − P̄a| + 1/|Pa − P̄b| + 1/|Pa −
P̄c|) = −1.40. The negative value of f (Pa) means that the action of moving Pa to the
other subset is going to increase the cut cost, which indicates that Pa should not be
moved. Similarly, the gains of other vertices are calculated as f (Pb) = −1.39, f (Pc) =
0.92, f (Pd) = −0.19, f (Pe) = 0.62, f (P̄a) = −0.39, f (P̄b) = −1.33, f (P̄c) = −1.02,
f (P̄d) = 0.46, and f (P̄e) = 0.84. For the ith iteration, the best vertex (with the largest
gain) is chosen to be moved to the other subset, and this vertex is denoted as vi. It
will be locked in that subset, and the gain of all its neighbors will be updated. In
the example, the best vertex is Pc, which has the largest gain of 0.92, and it will be
moved to the lower subset and locked. In this simple example, it can be easily verified
from the figure that moving Pc from the upper subset to the lower subset increases
the power matching quality: Pc is a better matching candidate for both P̄d and P̄e in
the lower subset than any other power vertices in the upper subset. However, there
is one problem if we directly perform this moving decision. In our case, using the best
vertex in every iteration may result in an extremely unbalanced result: one subset
contains a lot of vertices (powers), while the other subset contains very little. This will
cause a problem for our method because if the size of one block after a minimum cut
remains large, performing bipartite matching for this block will dominate the latency.
As a result, we introduce a balance threshold to the iterative minimum cut algorithm:
if moving the best vertex from subset A to B violates the threshold, then it will not be
moved, and instead, the best vertex in subset B will be moved to A and locked. After
all nodes are locked, there is a sequence F = { f (v1), f (v2), . . . , f (v2m)}. At this stage, it
seems strange that we have “moved” all vertices to their corresponding other subsets,
which does not make any sense. The reality is that all the moving action now is for the
purpose of analysis only, in order to determine which vertices will be actually moved,
as shown in the following step.

Note that in the sequence F , f (vi) means the gain (decrease in cut cost) of the single
moving action of vi, assuming all previous moving actions of v1, v2, . . . , vi−1 have already
been done. As a result, in order to know the total gain of moving v1, v2, . . . , vi, denoted
as f̃ (vi), we need to take the summation as

f̃ (vi) =
i∑

j=1

f (v j). (12)

By calculating f̃ (vi) for i = 1, 2, . . . , 2m, we can form the cumulative sum sequence
F̃ = { f̃ (v1), f̃ (v2), . . . , f̃ (v2m)}, where f̃ (vi) is the total gain of moving vertices from v1
till vi as discussed before. Assume f̃ (vk) is the largest element in F̃; it means that
moving v1, v2, . . . , vk leads to the largest total gain (i.e., largest cut cost decrease). As a

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:12 H. Wang et al.

result, we can perform the actual action by moving {v1, v2, . . . , vk} to their corresponding
other subsets. All aforementioned procedures are counted as one moving action.

Although the moving action can be performed repeatedly, previous research on cir-
cuit partitioning shows that two to four moving actions are enough to achieve the
local minimum [Fidducia and Mattheyses 1982; Dutt and Deng 1996]. For our case,
experiments show that only one moving action performs well enough.

After the minimum cuts, we cluster the powers into blocks. Then, bipartite matching
can be performed inside each block. Since minimum cuts already grouped the correlated
powers into one block, the remaining unmatched powers from one block can hardly be
matched with unmatched powers from other blocks. As a result, no further bipartite
matching will be performed and we can immediately determine the task migration
action based on the previous lower-level and higher-level bipartite matching results.
And the final remaining unmatched powers can be simply processed using DVFS.

The example showing the higher-level matching is presented in Figures 3(a), 3(b),
and 3(c). In Figure 3(a), all the unmatched powers after the lower-level matching
(which can be seen in Figure 2(b) in red) are collected to form the graph Gp. Note that
all vertices are connected by edges in graph Gp with weights, but they are not shown
in Figure 3 only for simplicity reasons. Then, the iterative minimum cut algorithm is
performed on graph Gp, with the initial cut in the dashed line shown in Figure 3(b), and
the final cut shown in Figure 3(c) dividing the powers into two blocks. Next, upper-level
bipartite matching is performed by formulating a new bipartite graph for each block
as shown in Figure 3(c).

3.3. Final Adjustment by DVFS

The DVFS method is introduced to do the final adjustment on the unmatched powers
from the previous bipartite matching algorithm. After the task migration action based
on the lower- and higher-level bipartite matching results, the already-matched powers
have been moved to the correct cores, which matches the power distribution given by
MPC with little difference at these positions. Because of such moving action, even the
remaining unmatched powers have been moved to a new position since their original
positions may have been taken by the matched ones.

Assume a load with unmatched power pi has been moved to the jth core where
the required power given by MPC is p̄j . Since pi is not matched with p̄j , they cannot
equal in value. If pi < p̄j , it means that if we keep the current state, the resulting
temperature around the jth core will be lower than the required ceiling temperature.
Since this will not harm the reliability of the chip, we can keep this power unchanged.
In the other case where pi > p̄j , we perform DVFS on pi with the power scaling ratio
rdv f s = p̄j/pi. This is the maximum performance that can be achieved by the jth core
without violating the temperature constraint. It is also noted that DVFS makes discrete
voltage/frequency adjustments, so in real-world applications, rdv f s is determined as the
nearest level, which is lower than p̄j/pi.

The final step performed on the 100-core example is shown in Figure 3(d). Since
there is pd < p̄a, pd is simply moved to its new position without DVFS. And DVFS is
performed on pe because pe > p̄d.

It is well known that in the DVFS method, the DC-DC converter, which is used to
adjust the supply voltage level, introduces overhead in the chip design. This could be
a serious problem in many-core systems, especially for per-core DVFS. It is practical
to introduce DVFS block, which contains a number of spatially adjacent cores that
share one DC-DC converter, in order to reduce the implementation overhead of the
DC-DC converter. In such case, the DVFS decision of each DVFS block should be made
according to the lowest voltage level requested by cores in the corresponding block and
leading to a throughput/performance drop. This is a tradeoff between DC-DC converter

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:13

implementation overhead against the chip performance. This tradeoff is a general and
important problem in many-core architecture and needs to be further researched in
future works.

This concludes the new algorithm, and we summarize the whole flow of the new
method in Algorithm 1.

ALGORITHM 1: Hierarchical Dynamic Thermal Management Algorithm

1: Calculate the desired power distribution P̄(k) using MPC with the provided tem-
perature constraint as in Equations (9) and (10).

2: Cluster the adjacent cores into lower-level blocks.
3: For each block, build its own bipartite graph G = (L, R, E) using the corresponding

part of P(k), P̄(k), and threshold eth.
4: Perform lower-level bipartite matching for each block. Record the matched pairs.
5: Collect unmatched powers from all lower-level blocks and build a new graph Gp =

(Vp, Ep) for minimum cut.
6: Generate higher-level blocks by partitioning the graph Gp using the modified iter-

ative minimum cutalgorithm.
7: Perform upper-level bipartite matching for each block generated in Step 6. Record

the matched pairs.
8: Determine the new positions of all loads based on the recorded lower-level and

upper-level matched pairs.
9: For all remaining unmatched powers, perform DVFS as described in Section 3.3.

4. EXPERIMENTAL RESULTS

The experiments are performed on a Linux server with two 2.90GHz eight-core 16-
thread CPUs and 64GB memory. The new hierarchical method is implemented using
MATLAB, and HotSpot [Huang et al. 2006] is used to build the thermal model based
on the many-core microprocessors with four different core configurations, from 100
cores (10 × 10) to 625 cores (25 × 25). The ambient temperature is 20◦C. The many-
core microprocessors in the experiments are composed of identical Alpha 21264 cores.
The dimension of all chips is 10mm × 10mm × 0.15mm. We assume there is no task-
processing-related communication and synchronization among cores in the many-core
microprocessors; that is, one task is assigned to one core. Wattch [Brooks et al. 2000]
is used to generate the power by running SPEC benchmarks [Henning 2000], and
one task is assigned to one core randomly as an initial task assignment. Next, task
assignment and scheduling actions are determined by the DTM method. We use nine
power traces of nine different SPEC benchmarks. For the power traces of different
CPUs, we recycle those nine power traces to get 100 power traces, 256 power traces,
and so on.

Because the size of the core scales as the core number increases, this will lead to
unrealistically high power density (and extremely high temperature) after the so-called
“power wall” or “utilization wall” is reached [Taylor 2013]. There are many solutions
proposed in order to solve this problem. One popular solution is dim silicon, which
scales power consumption of each core [Huang et al. 2011; Taylor 2013], and another
well-known solution is turning off some cores entirely [Taylor 2013; Shafique et al.
2014]. In this work, we adopt the dim silicon technology and scale the power traces
to ensure that all CPUs have similar power density, which leads to a temperature
distribution similar to today’s multicore chips. It is achieved by scaling the operating
frequency and voltage by the same ratio. In this work, we do not consider the strategy
of turning off a portion of cores entirely, which will be our future research direction.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:14 H. Wang et al.

Table I. Parameters of the New Hierarchical Method for CPUs
with Different Core Configurations

Configuration Scale eth r

100 cores (10 × 10) 0.21 0.06 500
256 cores (16 × 16) 0.08 0.05 2,100
400 cores (20 × 20) 0.052 0.04 3,000
625 cores (25 × 25) 0.033 0.03 3,000

For CPUs with different core numbers, the threshold eth in the task migration process
and the tuning parameter r in MPC (in Equation (8)) are manually tuned for each CPU
to ensure the temperature tracking quality. Note that the optimal values of eth and r
highly depend on the core number and architecture of the microprocessor. It is hard and
unnecessary to calculate these parameters theoretically, and in real-world applications,
it is much easier to perform experiments and fine-tune these parameters for a certain
many-core microprocessor, even in a trial-and-error way. All these parameters are
shown in Table I. We can see that eth scales with the size of the power module (size of
the core in our case). If the size of the core is relatively large, eth needs to be assigned a
relatively large value as well (please refer to the 100-core case in Table I shown later
in the experiment), and vice versa (see the 625-core case in Table I). This is because
a larger-power module means a larger area for power dissipation (this power module
has a larger power value as well), and as a result is able to allow a larger power value
difference for the same temperature violation tolerance. Another observation is that
larger number of cores needs a larger r. This is simply because in Equation (8), when
the core number increases, the magnitude of each element in Yceil −Yk does not change
much, but each element in �Pk (which is unknown and needs to be solved) should
be smaller (because the power of each core decreases). In order to achieve a smaller
solution of �Pk, a larger r needs to be used. Please note that for 625 cores, r remains
to be 3,000, which is the same as for 400 cores, because we found the difference is
insignificant by increasing r further.

For the lower-level clustering, we cluster every 25 (5×5) adjacent cores into one block.
For the upper-level processing, graph Gp will be partitioned by the modified iterative
minimum cut algorithm if the number of vertices in graph Gp is more than 240.

The DVFS and task migration activating period is set to be every 20s to minimize
the overhead effect from task migration (overhead from both computing and migration
action) when the core number increases. It is usually fine to use a much smaller mi-
gration period with a small number of cores, where computing overhead and migration
action overhead (due to core-to-core communication) are both small. For the many-core
case, frequent task migration is extremely hard to perform considering the large num-
ber of cores, so the migration period is extended. It is possible that the load on one core
is raised a lot in between the migration intervals and this may cause a temperature
violation. In such case, we can just perform DVFS inside the migration intervals when
needed to enhance the safety.

The overhead of the task migration action is considered in the experiments in ad-
dition to the task migration decision computing overhead. The normal task migration
action overhead is around 106 cycles, which counts for around 1ms for a 1GHz processor
[Cuesta et al. 2010]. Such overhead can be higher in many-core systems, because of
the long communication time caused by the large number of cores. As a result, we set
the migration time to be 100ms in a system with hundreds of cores. We also consider the
power consumption of task migration in the experiments. Such power is mainly caused
by the communication between the cores during migration time, and the corresponding
two cores are not processing any tasks during migration. As a result, we assume the

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:15

Fig. 4. Transient temperature traces of the 100-core CPU with different DTM methods. Lines with different
colors represent temperature traces of different cores. The new method in (b) [Ma et al. 2014] and in (c)
successfully tracks the ceiling temperature. But the DVFS-only method in (d) has many low-temperature
cores, which means the chip performance is lower.

power during the task migration time to be lower than the task processing time. In
order to be safe, we pessimistically make the power of a core during task migration
time to be the previous task average power processed on the core, and feed such power
into MPC for prediction.

For comparison, we have implemented two other MPC-based methods, the MPC-
based method with DVFS and task migration [Ma et al. 2014] for a multicore mi-
croprocessor and the MPC-based method with DVFS only. We also choose the DTM
method in Hanumaiah et al. [2011] for comparison because it shares the same goal
of our work: maximize performance (throughput) with temperature as the constraint
in high-performance processors. We have used the open-source program MAGMA V2
provided by Hanumaiah et al. [2011] in the experiment. MAGMA can only give the
results of the 100-core case and will fail with “out of memory” error for larger cases. In
order to be fair, all methods share the same activation period, power traces, and ceiling
temperature settings.

First, we let a CPU with 100 cores run at maximum speed without any DTM method.
The transient temperature traces of this CPU are shown in Figure 4(a). We can see
that the temperature of the core ranges from 90◦C to 120◦C. The temperature around
120◦C will clearly harm the reliability of the chip. The temperature variance among
cores is also measured and shown in Figure 5(a); it can be seen that the temperature

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:16 H. Wang et al.

Fig. 5. Transient variances among cores in the 100-core CPU with different DTM methods. The temperature
variance of the new method is slightly higher than that of the method in Ma et al. [2014], but much lower
than that of the DVFS-only method.

difference among cores is large without any DTM method activated.
Next, we test the new hierarchical method with the ceiling temperature set as 105◦C.

The new hierarchical method is activated at the time of 200 seconds. The corresponding
transient temperature traces of the 100-core CPU are shown in Figure 4(b), and the
corresponding temperature variance is shown in Figure 5(b). After the new hierarchi-
cal method is activated, the temperatures of all cores track the given 105◦C ceiling
temperature, and the temperature difference is greatly decreased.

For comparison, the MPC-based method with task migration and DVFS for multi-
core microprocessors in Ma et al. [2014] and the MPC-based method with DVFS only
are tested first. The ceiling temperatures of all methods are set to be 105◦C, and all
methods start to be activated at the same time point of 200 seconds with an activating
period of 20s. Figures 4(c) and 4(d) and 5(c) and 5(d) show the corresponding transient
temperature traces and temperature variances. The new hierarchical method has sim-
ilar transient behavior and a slightly higher variance compared with the method in
Ma et al. [2014] (but the new method performs way better in overhead and scalability
as will be shown later). And the DVFS-only MPC-based method performs much worse
than both the new hierarchical method and Ma et al. [2014] in terms of transient
temperature control and variance among cores.

Next, we compare our results with the method in Hanumaiah et al. [2011]. It also
performs DVFS and task migration in order to keep the temperature of the cores
tracking the ceiling temperature. However, in Hanumaiah et al. [2011], at making
DTM decisions, each core is assumed to be thermally isolated with all other cores
in order to save the computing cost. Such assumption may hold for a multicore chip

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:17

Fig. 6. Transient temperature traces of cores by performing DTM in Hanumaiah et al. [2011] on the
100-core microprocessor. Core-to-core heat exchange has a huge impact on temperatures for many-core
microprocessors, causing the 105◦C ceiling temperature to be seriously violated. The overshoot problem is
also significant compared to the MPC-based techniques.

with small core numbers, where the large cache area blocks heat exchange among
cores. But in many-core cases, due to the small size of each core, heat exchange among
cores is significant and cannot be ignored. Figure 6(a) shows the computed tempera-
tures of the 100-core microprocessor without considering heat exchange among cores.
Note that the temperature waveforms are in straight segments because of the larger
simulation steps used. Since DTM decisions are made by such temperatures, the ceil-
ing temperature is successfully tracked for most of the time. But such temperatures
are not the actual ones because a zero core-to-core heat exchange assumption is made.
We modified the MAGMA program and plotted the actual temperatures considering
heat exchange among cores. The results are shown in Figure 6(b). It is clear that the
DTM decision made with such an assumption is not optimal, and causes significant
actual temperature violations. From Figure 6, we can also see the overshoot problem in
temperature control. It is because of the zero-slack policy used for temperature/power
control in Hanumaiah et al. [2011]: when the current temperature is not exactly the
same as the ceiling temperature, the core is either turned off (if current temperature
is higher than the ceiling temperature) or run at full speed (if current temperature is
lower than the ceiling temperature). All the MPC-based algorithms do not have such
an overshoot problem as shown in Figure 4, because they are able to predict into the
future and make DTM decisions, which leads to smooth temperature control.

The variance comparisons on all CPUs with different numbers of cores are recorded
in Table II, where varo is variance without any DTM method, vard is variance with DTM
using DVFS only, varc is variance with DTM in Ma et al. [2014], varn is variance with
our new hierarchical method, and varh is variance with the method in Hanumaiah et al.
[2011]. All results for different numbers of cores are similar to the 100-core example:

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:18 H. Wang et al.

Table II. The Temperature Variance Among Cores in CPUs with Different
Core Configurations

Configuration varo vard varc varn varh

100 cores (10 × 10) 54.2 18.8 5.5 7.6 5.9
256 cores (16 × 16) 50.8 19.3 3.4 6.5 N/A
400 cores (20 × 20) 52.1 16.7 2.5 4.1 N/A
625 cores (25 × 25) 50.5 15.9 2.3 4.1 N/A

varo is the variance without any DTM method, vard is variance with
DTM using DVFS only, varc is variance with DTM in Ma et al. [2014],
varn is variance with our new hierarchical method, and varh is the
variance with method in Hanumaiah et al. [2011].

Table III. Average Runtime Per Second of the DTM Methods on CPUs with Different Core Configurations

New Method Ma et al. [2014] DVFS only Hanumaiah et al. [2011]
tp tm ta tall tp tm tall tp tall tm tall

Core # (10−4s) (10−4s) (10−4s) (10−4s) (10−4s) (s) (s) (10−4s) (10−4s) (s) (s)

100 1.58 1.63 0 3.21 1.49 0.01 0.01 1.60 1.60 0.01 0.01
256 2.85 19.26 1.58 23.7 2.93 0.45 0.45 2.80 2.80 0.09 0.09
400 4.88 7.77 3.27 15.9 5.38 1.90 1.90 5.29 5.29 0.34 0.34
625 9.09 12.27 17.49 38.8 8.27 8.63 8.63 8.87 8.87 0.99 0.99

tp represents MPC time, tm means task migration matching time, and ta denotes for minimum cut partitioning
time.

the method in Ma et al. [2014] slightly outperforms the new hierarchical method, while
the DVFS-only MPC-based method has significantly larger variance among cores. The
method in Hanumaiah et al. [2011], although it can only finish the 100-core case,
performs well in the variance test and gives similar results to the method in Ma et al.
[2014].

It can be seen from previous comparisons for transient temperature traces and tem-
perature variance that the difference between our new hierarchical method and the
method in Ma et al. [2014] is small. What really shines for the new hierarchical method
is the scalability and small overhead for many-core microprocessors compared with Ma
et al. [2014] and Hanumaiah et al. [2011]. Now, we measure the average runtime-per-
second execution for all the DTM methods. Since the new method is mainly composed
of MPC, bipartite matching, and minimum cut partitioning, we split the total runtime
into MPC time tp, matching time tm, and minimum cut partitioning time ta for better
analysis. The runtime of the matching operation of the new method is measured by
adding one lower-level matching time and one upper-level matching time. For lower-
level (upper-level) matching time, if there are several matching actions performed in
parallel, we count the longest one that is dominating the delay. The method in Ma et al.
[2014] shares MPC time tp and tm but does not have partitioning time ta. The DVFS-
only method shares only MPC time tp. Although the method in Hanumaiah et al. [2011]
can only finish the 100-core case, we are still able to test its task migration time tm
by feeding the corresponding function using a matrix with correct dimensions filled
by random numbers. The computing times of CPUs with different numbers of cores
are recorded in Table III. It is obvious that for the method in Ma et al. [2014], the
overhead becomes more significant as the core number increases. Starting from the
400-core case, for each second of management, this method spends more than 1 second
on computing, which makes it totally inapplicable. For the method in Hanumaiah et al.
[2011], the task migration computing time also increases quickly with the core number,
which makes it unusable for many-core applications. According to their paper, this is
because the task migration algorithm suffers the O(nq)3 complexity (which is similar

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:19

Table IV. The Average Number of Instructions Per Second of One
Core on CPUs with Different Configurations

Configuration MIPSo MIPSd MIPSn

100 cores (10 × 10) 290.8 279.6 281.5
256 cores (16 × 16) 210.2 202.9 207.1
400 cores (20 × 20) 182.1 174.7 178.8
625 cores (25 × 25) 156.5 150.2 154.4

MIPSo represents the IPS in millions (MIPS) of the core
without any DTM method, MIPSd is for MIPS of DTM with
DVFS only, and MIPSn denotes MIPS of our new hierarchi-
cal method.

to the task migration complexity in Ma et al. [2014]), where n is the core number and
q is the task number, and n = q is assumed in Hanumaiah et al. [2011]. When the
core/task number increases, such O(n6) complexity will make the task migration too
time consuming to be used. On the other hand, the computing time grows very slowly
in the new method. Even for the 625-core case, which is considered as a huge number
of cores, the new method is able to make management decisions in 4ms for every 1
second of management. This is only 0.4% of the computing time spent on only a few
number of cores, and thus can be considered as negligible. Of course, the DVFS-only
method performs best in overhead, but the slight overhead spent for task migration in
the new method brings significant advantage in CPU performance, as shown next.

Finally, we measure the performance of different many-core CPUs using different
DTM methods. Instructions per second (IPS) is used to estimate CPU performance.
Since the methods in Ma et al. [2014] and Hanumaiah et al. [2011] show significant
overhead and cannot complete the management decision in time for many-core CPUs,
they are not considered in this CPU performance comparison. The average IPS of the
core using the new hierarchical method and the method with DVFS only are collected
in Table IV. In the table, MIPSo represents the average number of IPS in millions
(MIPS) of the core without any DTM method, MIPSd stands for the average number of
IPS in millions of the core using DTM with DVFS only, and MIPSn denotes the average
number of IPS in millions of the core with our new hierarchical method. Considering
MIPSo as the ideal performance of the CPU without any thermal constraint, MIPSn
is only slightly smaller than MIPSo, showing the effectiveness of the new hierarchical
algorithm in optimal management decision making and small overhead even for a huge
number of cores. The new method also outperforms the DVFS-only method in terms of
CPU performance. Although the new method is slightly larger in overhead, the time
spent in task migration decision making reduces the number of DVFS activation times
and brings overall performance benefits. We remark that the throughput enhancement
of the new method compared to the DVFS-only method is highly dependent on the
running applications. If there exists very low-temperature cores (or even idle cores),
then the throughput improvement of the new method will be much more significant
compared to the DVFS-only method, because the very low-temperature cores can be
fully used in the migration process to reduce the DVFS actions.

5. CONCLUSION

In this article, a hierarchical dynamic thermal management method has been proposed
for high-performance many-core microprocessors. Based on model predictive control,
the new method uses both task migration and DVFS to reduce performance degra-
dation and improve the thermal reliability of the chip. In order to be scalable for
many-core microprocessors, it performs bipartite matching-based task migration de-
cision making at two levels: lower level within block and higher level among blocks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

1:20 H. Wang et al.

A modified iterative minimum cut algorithm is used to assist the upper-level task
migration decision-making process. Experiments on a number of many-core micropro-
cessors show that the new method is able to keep the chip in a safe temperature range,
and it outperforms existing methods with higher computing performance of many-core
microprocessors.

REFERENCES

Raid Ayoub and Tajana Rosing. 2009. Predict and act: Dynamic thermal management for multi-core proces-
sor. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED’09).
99–104.

Andrea Bartolini, Matteo Cacciari, Andrea Tilli, and Luca Benini. 2013. Thermal and energy management of
high-performance multicores: Distributed and self-calibrating model-predictive controller. IEEE Trans-
actions on Parallel and Distributed Systems 24, 1 (January 2013), 170–183.

David Brooks, Robert Dick, Russ Joseph, and Li Shang. 2007. Power, thermal, and reliability modeling in
nanometer-scale microprocessors. IEEE Micro 27, 3 (May–June 2007), 49–62.

David Brooks and Margaret Martonosi. 2001. Dynamic thermal management for high-performance mi-
croprocessors. In Proceedings of the IEEE International Symposium on High-Performance Computer
Architecture (HPCA’01). 171–182.

David Brooks, Vivek Tiwari, and Margaret Martonosi. 2000. Wattch: A framework for architectural-level
power analysis and optimizations. In Proceedings of the International Symposium on Computer Archi-
tecture (ISCA’00). 83–94.

Thidapat Chantem, Sharon Hu, and Robert Dick. 2011. Temperature-aware scheduling and assignment
for hard real-time applications on MPSoCs. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 19, 10 (October 2011), 1884–1897.

Jason Cong and Bo Yuan. 2012. Energy-efficient scheduling on heterogeneous multi-core architectures. In
Proc. Int. Symp. on Low Power Electronics and Design (ISLPED’12). 345–350.

David Cuesta, Jose Ayala, Jose Hidalgo, David Atienza, Andrea Acquaviva, and Enrico Macii. 2010. Adaptive
task migration policies for thermal control in MPSoCs. In Proceedings of the IEEE Annual Symposium
on VLSI. 110–115.

James Donald and Margaret Martonosi. 2006. Techniques for multicore thermal management: Classification
and new exploration. In Proceedings of the International Symposium on Computer Architecture (ISCA’06).
78–88.

Shantanu Dutt and Wenyong Deng. 1996. A probability-based approach to VLSI circuit partitioning. In Proc.
Design Automation Conf. (DAC’96). ACM, 100–105.

Thomas Ebi, Mohammad Abdullah Al Faruque, and Jörg Henkel. 2009. TAPE: Thermal-aware agent-based
power economy for multi/many-core architectures. In Proceedings of the International Symposium on-
Computer Aided Design (ICCAD’09). 302–309.

Charles Fidducia and Robert Mattheyses. 1982. A linear-time heuristic for improving network partitions. In
Proceedings of the Design Automation Conference (DAC’92). 175–181.

Yang Ge, Parth Malani, and Qinru Qiu. 2010. Distributed task migration for thermal management in many-
core systems. In Proceedings of the Design Automation Conference (DAC’10). 579–584.

Vinay Hanumaiah and Sarma Vrudhula. 2014. Energy-efficient operation of multicore processors by DVFS,
task migration, and active cooling. IEEE Transactions on Computers 63, 2 (February 2014), 349–360.

Vinay Hanumaiah, Sarma Vrudhula, and Karam Chatha. 2011. Performance optimal online DVFS and task
migration techniques for thermally constrained multi-core processors. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 30, 11 (November 2011), 1677–1690.

John L. Henning. 2000. SPEC CPU 2000: Measuring CPU performance in the new millennium. IEEE
Computer 1, 7 (July 2000), 28–35.

Wei Huang, Shougata Ghosh, Siva Velusamy, Karthik Sankaranarayanan, Kevin Skadron, and Mircea R.
Stan. 2006. HotSpot: A compact thermal modeling methodology for early-stage VLSI design. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 14, 5 (May 2006), 501–513.

Wei Huang, Karthick Rajamani, Mircea Stan, and Kevin Skadron. 2011. Scaling with design constraints:
Predicting the future of big chips. IEEE Micro 31, 4 (July–August 2011), 16–29.

Ramkumar Jayaseelan and Tulika Mitra. 2009. A hybrid local-global approach for multi-core thermal man-
agement. In Proceedings of the International Symposium on Computer Aided Design (ICCAD’09). 314–
320.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

Hierarchical Dynamic Thermal Management Method 1:21

Michael Kadin, Sherief Reda, and Augustus Uht. 2009. Central versus distributed dynamic thermal man-
agement for multi-core processors: Which one is better? In Proceedings of the IEEE/ACM International
Great Lakes Symposium on VLSI (GLSVLSI’09). 137–140.

Heba Khdr, Santiago Pagani, Muhammad Shafique, and Jorg Henkel. 2015. Thermal constrained resource
management for mixed ILP-TLP workloads in dark silicon chips. In Proceedings of the Design Automation
Conference (DAC’15). 1–6.

Guanglei Liu, Ming Fan, and Gang Quan. 2012. Neighbor-aware dynamic thermal management for multi-
core platform. In Proceedings of the European Design and Test Conference (DATE’12). 187–192.

Jian Ma, Hai Wang, Sheldon Tan, Chi Zhang, and He Tang. 2014. Hybrid dynamic thermal management
method with model predictive control. In Proceedings of the IEEE Asia Pacific Conference on Circuits
and Systems.

Almir Mutapcic, Stephen Boyd, Srinivasan Murali, David Atienza, Giovanni De Micheli, and Rajesh Gupta.
2009. Processor speed control with thermal constraints. IEEE Transactions on Circuits and Systems I:
Regular Papers 56, 9 (September 2009), 1994–2007.

Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan Venkataramani, Tulika Mitra, and
Sanjay Vishin. 2013. Hierarchical power management for asymmetric multi-core in dark silicon era.
In Proceedings of the Design Automation Conference (DAC’13). 1–9.

Michael Powell, Mohamed Gomaa, and T. N. Vijaykumar. 2004. Heat-and-run: Leveraging SMT and CMP to
manage power density through the operating system. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’04). 260–270.

Muhammad Shafique, Shelly Garg, Jorg Henkel, and Dinan Marculescu. 2014. The EDA challenges in the
dark silicon era. In Proc. Design Automation Conf. (DAC’14). 1–6.

Kevin Skadron, Mircea Stan, Wei Huang, Siva Velusamy, Karthik Sankaranarayanan, and David Tarjan.
2003. Temperature-aware microarchitecture. In Proceedings of the International Symposium on Com-
puter Architecture (ISCA’03). 2–13.

Cheng Tan, Thannirmalai Muthukaruppan, Tulika Mitra, and Lei Ju. 2015. Approximation-aware schedul-
ing on heterogeneous multi-core architectures. In Proceedings of the Asia South Pacific Design Automa-
tion Conference (ASP-DAC’15). 618–623.

Michael Taylor. 2013. A landscape of the new dark silicon design regime. IEEE Micro 33, 5 (October 2013),
8–19.

Yefu Wang, Kai Ma, and Xiaorui Wang. 2009. Temperature-constrained power control for chip multiprocessors
with online model estimation. In Proceedings of the International Symposium on Computer Architecture
(ISCA’09). 314–324.

Francesco Zanini, David Atienza, Luca Benini, and Giovanni De Micheli. 2009. Multicore thermal manage-
ment with model predictive control. In Proceedings of the 19th European Conference on Circuit Theory
and Design. IEEE Press, 90–95.

Received August 2015; revised February 2016; accepted February 2016

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 1, Article 1, Pub. date: July 2016.

