
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

FastESN: Fast Echo State Network
Hai Wang, Member, IEEE, Xingyi Long, and Xue-Xin Liu

Abstract—Echo state networks (ESNs) are reservoir computing
based recurrent neural networks widely used in pattern analysis
and machine intelligence applications. In order to achieve high
accuracy with large model capacity, ESNs usually contain a large
sized internal layer (reservoir), making the evaluation process
too slow for some applications. In this work, we speed up
the evaluation of ESN by building a reduced network called
the fast echo state network (fastESN), and achieve an ESN
evaluation complexity independent of the original ESN size for
the first time. FastESN is generated using three techniques.
First, the high dimensional state of the original ESN is approx-
imated by a low dimensional state through proper orthogonal
decomposition (POD) based projection. Second, the activation
function evaluation number is reduced through the discrete
empirical interpolation method (DEIM). Third, we show the
directly generated fastESN has instability problems and provide
a stabilization scheme as a solution. Through experiments on four
popular benchmarks, we show that fastESN is able to accelerate
the sparse storage based ESN evaluation with a high parameter
compression ratio and a fast evaluation speed.

Index Terms—Echo state networks, reservoir computing, re-
current neural networks, complexity reduction, acceleration.

I. INTRODUCTION

The artificial neural network (ANN) has been widely used

as a powerful tool in many pattern recognition and machine

learning applications. Particularly, deep network, which is

ANN with multiple neuron layers, demonstrates superior per-

formances in many computer vision and speech recognition

applications [1]. It is even able to handle some complex tasks

such as the abstract strategy board game playing [2], real-

time strategy video game playing [3], and the very large scale

integration (VLSI) circuit design and optimization [4]–[8].

Belonging to the recurrent neural network (RNN) which is

the deep network specialized in dealing with temporal data [1],

echo state network (ESN) is an important reservoir computing

based neural network [9] and is closely related to the liquid

state network [10]. ESN is known for its simple structure with

a large sized internal recurrent topology called the reservoir.

Furthermore, unlike the normal RNNs whose weights are all

trainable, only the output weights of an ESN are trained

easily using the linear regression method [11]. Thanks to the

simple structure and the easy linear regression based training

process, ESNs have gained popularity in many time series and

nonlinear dynamical system modeling applications [7], [12],

[13].

After training, a neural network will be used in an appli-

cation: the network will take the input data and produce the

This research is supported by National Natural Science Foundation of China
under grant No. 61974018.

H. Wang and X. Long are with School of Electronic Science and Engineer-
ing, University of Electronic Science and Technology of China, Chengdu,
610054 China.

X.-X. Liu is with Pure Storage, Inc., Mountain View, CA 94041 USA.

output data. This is called the evaluation process, or forward

propagation since the information flows from the back (input

side) to the front (output side). The evaluation speed of an

ESN is a major concern because many ESN based applications

require quick service response time and/or are deployed on

resource constrained devices such as mobile phones, tablets,

wearable devices, etc. To make matters worse, ESNs usually

need a large reservoir (large internal unit number) in order to

capture the complex features in the training data [14]. Such

a large reservoir will further slow down the computation in

evaluation.

Many research studies have been conducted to speed up

the forward propagation of deep networks, most of which

focus on the convolutional neural networks (CNNs) by us-

ing methods like parameter pruning [15]–[17] and low-rank

approximation [18], [19], as briefly surveyed in Section II.

However, to the best of our knowledge, there are very few

acceleration methods for the evaluation of ESNs, with some

principal component analysis (PCA) based methods proposed

in [20], [21]. Unfortunately, these methods are only designed

to reduce the number of inputs [20] or to reduce the number of

state signals transmitted to the special Volterra filter structured

output layer [21]. Since the internal units/states (reservoir) are

left untouched, they do not work for the general ESNs as

discussed in Section II.

In this work, we propose a new compact network called fast

echo state network (fastESN) to accelerate the ESN evaluation

with three complexity reduction techniques:

1) The high dimensional state of the ESN is approximated

by a low dimensional state through the proper orthogonal

decomposition (POD) based projection method, which

was introduced to analyze turbulent flows [22] and was

widely used to reduce dynamical systems [23]. This state

approximation accelerates the evaluation of ESN simply

because a smaller state will be evaluated in the forward

propagation.

2) The activation operation number (i.e., the number of

operations by the activation function tanh) of ESN is

reduced by using the discrete empirical interpolation

method (DEIM) [24]. This technique further increases

the evaluation speed, because fewer nonlinear function

evaluations and related computations are needed. Thanks

to the two techniques above, the evaluation complexity

of the fastESN is much lower than that of the ESN and

is independent of the ESN’s internal unit number.

3) We show theoretically and experimentally that the re-

duced network directly generated by DEIM, although

much faster to evaluate than the original ESN, may be

unstable. To solve this problem, a stabilization technique

with the idea originally introduced in [25] is utilized,

which stabilizes the fastESN to make its evaluation not



2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

only fast but also stable.

The main contribution of this work and the advantages of

fastESN are

1) By introducing fastESN, we achieve an ESN evaluation

complexity of O(q2+q ·nin+q ·nout) for the first time,

where q is any user specified number independent of the

original ESN size, nin and nout are the input and output

numbers, respectively.

2) We demonstrate how to reduce the ESN state size

through a state approximation projection framework and

also how to reduce the function dimension via a DEIM

procedure with stability preservation technique.

3) FastESN greatly reduces the parameter number of the

ESN to save storage. It has fewer parameters even

compared with the sparsely connected ESN because its

weight matrices only have a dimension of q × q.

4) FastESN has a structure similar to the ESN and inherits

the stability from the original ESN. As a result, it

behaves just like the ESN, but is smaller.

5) FastESN can be generated by collecting samples using

the original ESN. Therefore, it can be applied in a wide

range of scenarios, even without the training data.

The rest of this article is organized as follows. In Section II,

we discuss the related work on the acceleration of neural

network evaluation. The preliminaries of ESN are given in

Section III, including the structure as well as the basic training

and evaluation procedures. Then, we present fastESN in Sec-

tion IV, covering its structure, its generation and stabilization

techniques, the flow of ESN evaluation acceleration using

fastESN, and the complexity analysis of fastESN evaluation,

etc. Next, the experimental results on four well known bench-

marks are given in Section V. The limitations of fastESN

and the future work are discussed in Section VI. Finally,

Section VII concludes this article.

II. RELATED WORK

The research studies on the evaluation acceleration of neural

networks mainly focus on CNNs. The acceleration methods

can be mainly classified into pruning based and low-rank

approximation based. For the pruning based methods, Han et

al. proposed to prune the weights with small magnitude to

reduce the computational complexity of CNN evaluation [15].

The coarse pruning methods like filter pruning and channel

pruning were proposed in [17], [26], [27]. The accuracy-

sparsity relationship with different granularity for pruning was

studied in [28]. Recently, a layer-wise pruning method [16]

was introduced by reducing the redundancies within the

learned features. For the low-rank approximation based meth-

ods, Jaderberg et al. proposed to approximate the original filter

by a set of rank-1 filters [18]. Zhang et al. introduced an

acceleration method for very deep CNNs by considering the

nonlinear effects in the low-rank approximation [19].

On the ESN side, since its introduction by Jaeger [9], there

have been many new techniques proposed to improve the

ESNs, including the least square based training [11], the leaky

integrator units [29], the reservoir adaptation method by intrin-

sic plasticity [30], [31], the stacked recurrent layers [32], and

Fig. 1: The structure of an echo state network with nin inputs

and nout outputs. It has three layers: the input layer (u), the

hidden/internal layer (x) with the hidden units as the neurons

in the middle circle, and the output layer (y). The black solid

square represents a delay of one time step.

an automatic design scheme using multiple subreservoirs [33].

To achieve faster evaluation speed, there are also methods built

upon sparse and deterministic reservoir structures, such as the

minimum complexity reservoir [14] and the cycle reservoir

with jumps (CRJ) [34].

Accelerating the evaluation of ESNs remains a challenging

problem, with few related research studies using principal

component decomposition (PCA). In [35], PCA is applied to

speed up the training process of ESNs, but with the evaluation

complexity untouched. Bianchi et al. proposed an acceleration

method that reduces the number of inputs using PCA for the

ESN used for electric load forecasting [20]. This method is

designed specifically for applications with a large number of

highly correlated inputs. It cannot reduce the high computing

cost caused by the large reservoir and has little acceleration

effects for the applications with a single or moderate number

of inputs. A PCA based ESN method was proposed in [21],

where PCA is used to reduce the number of state signals

transmitted to the output layer which has a Volterra filter

structure. This method is effective because the number of

Volterra filter coefficients grows dramatically with the number

of signals transmitted to the output [21]. However, for the

general ESNs without the Volterra filter structure, such PCA

based method will introduce extra storage and computing

overhead, making the evaluation even slower.

In summary, there lacks an ESN evaluation acceleration

method that reduces the hidden unit number to achieve a

computational complexity irrelevant to the original ESN size.

In this work, we develop fastESN to solve this problem:

fastESN is the first ESN evaluation method with a compu-

tational complexity of O(q2 + q · nin + q · nout), where q is

any user specified number irrelevant to the original ESN size,

nin and nout are the input and output numbers, respectively.

III. BASICS OF THE ESN

In this section, we briefly present the basics of the ESN

which will be used in this article. For more details of the

ESN, please refer to [9], [29], [36].

A. The structure of ESN

The ESNs are special RNNs, which use the recurrent

structure to model the sequence correlation in time. The



WANG et al.: FASTESN: FAST ECHO STATE NETWORK 3

architecture of an ESN is given in Fig. 1. It is composed

of three layers: the input layer (u), the hidden/internal layer

(x), and the output layer (y). The recurrent relations (the time

delays) are represented by the black solid squares in the figure,

which exist in the internal layer.

An ESN with nin inputs, nout outputs, and n internal

units, can be represented by the following nonlinear difference

equations in state-space form at a discrete time k:

x(k + 1) = f(Wx(k) +Winu(k)),

y(k + 1) = Woutx(k + 1),
(1)

where

• x(k) ∈ R
n

is the state vector containing the values of the

n internal units at time k;

• u(k) ∈ R
nin and y(k) ∈ R

nout are the input and output

vectors at time k;

• Win ∈ R
n×nin is the input weight matrix for the connec-

tions between input units and internal units;

• W ∈ R
n×n

is the internal weight matrix for the connec-

tions from time k to k + 1 within the internal units;

• Wout ∈ R
nout×n

is the output weight matrix for the

connections between the internal units and the output

units;

• f(x) is called the activation function, which is usually a

nonlinear sigmoid function. In this article, we use f(x) =
tanh(x) by default since it is the most popular activation

function for ESN.

To simplify presentation, we also call the internal unit number

n as the “order” of the ESN.

B. Training and evaluation of ESN

The internal weights in W and input weights in Win of

ESN are untrainable: they are randomly generated weights

of the reservoir. During the training process, only the output

weights in Wout are trained through linear regression. It is

noteworthy that the training of Wout does not need back-

propagation through time (BPTT), and hence the problem of

learning long-term dependencies in the normal RNNs, which

is caused by the BPTT training [37], is avoided [38].

The evaluation (forward propagation) of ESN is straight-

forward. For each time step k, ESN takes the current input

and internal state to compute the new state and output of time

step k + 1 using (1). This procedure will continue iteratively

through all the time steps. The evaluation complexities at each

time step are

O(n2 + n · nin + n · nout) (2)

for dense matrix storage of W and

O(nnz + n · nin + n · nout) (3)

for sparse matrix storage of W [39] (used in the experiments

of this work) with nnz as the number of nonzero elements in

W , both are governed by the system size. This could make

the evaluation too slow for some applications when n and nnz

are large. In the next section, we will propose to generate a

small network called fastESN, which has an order q with q ≪

(a) The structure of a fastESN. It contains one more internal/hidden layer (ẑ)
compared with the ESN shown in Fig. 1.

(b) The simplified diagram of a fastESN.

Fig. 2: The structure of a fastESN. The black solid square

means a delay of one time step.

n. Then we can accelerate the ESN evaluation by evaluating

fastESN instead, using the same input sequence.

IV. FAST ECHO STATE NETWORK (FASTESN)

In this section, we present the fastESN which is generated to

speed up the evaluation of ESN. First, we show the structure of

fastESN in Section IV-A. Subsequently, we present the three

techniques that generate fastESN from the original ESN in

the following order: the state approximation technique which

reduces the state dimension of the original ESN is shown

in Section IV-B, the activation function approximation tech-

nique which further lowers the network evaluation complexity

is given in Section IV-C, the stabilization technique which

stabilizes the reduced network and leads to the final form

of fastESN is presented in Section IV-D. Next, we analyze

the evaluation complexity of fastESN in Section IV-E and

present the extension for the leaky ESN in Section IV-F.

Finally, the flow of accelerating ESN evaluation using fastESN

is summarized in Section IV-G.

A. The structure of fastESN

First of all, we present the structure of the fastESN to serve

as an overview of the new method.

Assume we have built and trained an ESN expressed in (1)

with the structure given in Fig. 1. The structure of a fastESN

generated from the ESN is shown in Fig. 2. We see that

fastESN has a similar structure compared with the ESN. It

just contains one extra layer of internal units (ẑ) and is smaller

(with q units in each internal layer) than the ESN (with n units

in the internal layer).

The state-space formulation of the fastESN is written as:

x̂(k + 1) = Êlx̂(k) + Êdf(Ŵ x̂(k) + Ŵinu(k)),

y(k + 1) = Ŵoutx̂(k + 1),
(4)

where x̂(k) ∈ R
q
, Ŵin ∈ R

q×nin , Ŵ ∈ R
q×q

, Ŵout ∈
R

nout×q
, Êl ∈ R

q×q
, and Êd ∈ R

q×q
, with q ≪ n.



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Equation (4) also indicates that fastESN has two internal

layers, with q units in each layer. To see this more clearly,

we can rewrite (4) into the following form by introducing an

extra state vector ẑ as

ẑ(k) = f(Ŵ x̂(k) + Ŵinu(k)),

x̂(k + 1) = Êlx̂(k) + Êdẑ(k),

y(k + 1) = Ŵoutx̂(k + 1),

(5)

where ẑ(k) ∈ R
q

is the state vector representing the extra

internal layer with q units.

In the subsequent subsections, we will present the tech-

niques that generate the fastESN.

B. State approximation using projection

This subsection demonstrates the state approximation tech-

nique to generate a smaller network with order q ≪ n for

evaluation (forward propagation), so that the complexity ((2)

or (3)) is significantly reduced and evaluation is much faster.

1) The framework of state approximation: The following

state approximation

Vxx̂(k) ≈ x(k), (6)

where Vx ∈ R
n×q

is a constant matrix (called projection

matrix)
1

and q ≪ n, allows us to approximate the original

n-dim x(k) of the ESN in (1) using a q-dim x̂(k) of fastESN.

The state approximation above leads to a residual R if we

plug (6) in (1) as

R(k) = f(WVxx̂(k) +Winu(k))− Vxx̂(k + 1). (7)

Then, by multiplying V
T

x to the residual R(k) and forcing

the result to be zero as

V
T

x f(WVxx̂(k) +Winu(k))− V
T

x Vxx̂(k + 1) = 0, (8)

we end up with a new state-space model as
2

x̂(k + 1) = V
T

x f(WVxx̂(k) +Winu(k)),

y(k + 1) = WoutVxx̂(k + 1).
(9)

The procedure above is known as the Bubnov–Galerkin pro-

jection.

The model/network expressed in (9) has the state x̂(k) with

order q, which approximates the original n order state x(k)
through equation (6). As a result, we call this new network

as the state approximation ESN in this article. The state

approximation ESN is a semi-complete form of fastESN (as

in (4)), with only state approximation.

2) Forming the projection matrix via proper orthogonal

decomposition: There are many ways to form the projection

matrix Vx that leads to the approximation (6). For fastESN, we

form the projection matrix Vx using the time domain proper

orthogonal decomposition (POD), because the POD samples

can be easily obtained: if the training samples (for the ESN

training) are available, part of them can be directly used as

the POD samples; otherwise, the POD samples can be simply

1
How to form the projection matrix to satisfy the approximation will be

presented later in Section IV-B2.
2
Here V

T

x Vx is an identity matrix as will be shown later in Section IV-B2.

generated by forward propagation of the trained ESN with

sample inputs.

POD has been introduced to analyze turbulent flows [22]

and widely used to reduce both the linear and nonlinear

dynamical systems [23] in a variety of applications including

fast simulation of the VLSI systems [40] and runtime thermal

estimation of the multi-core integrated systems [41].

The basic idea of POD is to take samples of the original

dynamical system state, either in the time domain or in the

frequency domain, and form the projection matrix using the

principle components of these samples. For fastESN, we will

take the original ESN state samples in the time domain as the

POD samples.

Specifically, assume we take the original system state sam-

ples at ns different time points (i.e., take x(k) with ns different

k) as {x1, x2, . . . , xns
}.

Then, apply singular value decomposition (SVD) to the

POD samples as

VxΣxU
T

x
SVD
←−−− X, (10)

where X =
[

x1, x2, . . . , xns

]

∈ R
n×ns , Vx ∈ R

n×ns , Σx ∈

R
ns×ns , and Ux ∈ R

ns×ns .

Finally, to eliminate the redundancies in the POD samples,

we truncate Vx matrix by keeping only its first q columns as

Vx ← Vx[:, 1 : q], (11)

where we used the MATLAB-like notation for matrix trunca-

tion. Since the first q columns of the original Vx correspond

to the q largest singular values in Σx, the most important

information in the samples is kept after truncation. Also, notice

that Vx matrix is truncated from a unitary matrix according to

the property of SVD, so there is V
T

x Vx = I .

The truncated Vx will be used as the projection matrix in

the state approximation presented in Section IV-B1.

3) Analysis of the state approximation: So far, we have

presented the framework of the state approximation and the

construction of the projection matrix. It is natural to ask why

the projection matrix Vx leads to a good state approximation.

In other words, why does the state approximation ESN ex-

pressed in (9) have similar outputs compared with the original

ESN in (1) (assuming both are driven by the same input

sequence)?

To answer the questions above, we will look for the standard

projection which connects Vxx̂(k) with x(k) using a projector,

then the state approximation can be explained using the

standard projection.

First, let us assume the state approximation ESN (9) is fully

accurate at time k− 1, i.e., there is Vxx̂(k− 1) = x(k− 1). 3

With the assumption above, from (9) and (1), we have

x̂(k) = V
T

x f(WVxx̂(k − 1) +Winu(k − 1))

= V
T

x f(Wx(k − 1) +Winu(k − 1))

= V
T

x x(k).

(12)

3
Please note that the only purpose we make this assumption is to show

why does the state approximation lead to the similar outputs compared with
the original, because we need to isolate the errors from the previous steps
to see the error generated only at the current step. In real applications, this
assumption does not hold.



WANG et al.: FASTESN: FAST ECHO STATE NETWORK 5

By introducing a new variable x̃(k) = Vxx̂(k) for convenience

of presentation, we have

x̃(k) = Vxx̂(k) = VxV
T

x x(k). (13)

Clearly, VxV
T

x ∈ R
n×n

is an orthogonal projector (because

there is VxV
T

x = VxV
T

x × VxV
T

x ), which projects x(k) onto

the column space of Vx along the orthogonal direction.

If x(k) lies inside the column space of V , i.e., x(k) ∈
colspan(Vx), then there is

VxV
T

x x(k) = x(k), (14)

which leads to the exact “approximation”:

x̃(k) = Vxx̂(k) = x(k). (15)

Since the column space of Vx is spanned by the principle

components of the time domain samples {x1, x2, . . . , xns
},

x(k) lies close to the column space of Vx if it is close to

a sample xi with i = 1, 2, . . . , ns, leading to a good state

approximation in (6). This concludes our analysis of the state

approximation.

4) Computational complexity problem of the state approxi-

mation ESN: In the forward propagation of the state approx-

imation ESN (9), computing WVxx̂(k − 1) requires around

n ·q operations, since WVx is an n×q matrix. In addition, the

activation function f needs to be evaluated n times and com-

puting V
T

x f(·) needs n · q operations. What is more, although

the operation number of the output side WoutVxx̂(k + 1) has

been reduced to q · nout, the input side Winu(k) still requires

n · nin operations. As a result, the evaluation complexity of

the state approximation ESN is

O(n · q + n · nin + q · nout). (16)

Even though this is already lower than that of the original ESN

((2) and (3)), it still involves the original ESN internal unit

number n. This problem must be solved to deliver impressive

speedup.

Next, we will present the second fastESN construction

technique, called activation function approximation, which

further reduces the complexity by replacing the remaining n

with q in (16).

C. Activation function approximation

By analyzing the computational complexity problem of the

state approximation ESN, we find the major cause of the

problem is that the activation function f has to operate on

the n-dim vector WVxx̂(k) +Winu(k) because V
T

x ∈ R
q×n

is multiplied to the results of f(·).
An intuitive idea to solve this problem is to move V

T

x

inside the activation function f , forming a q × q matrix like

V
T

x WVx to reduce the computational complexity. However,

this straightforward idea does not work since the activation

function f is usually nonlinear in the artificial neural networks,

meaning V
T

x f(WVxx̂(k) + Winu(k)) 6= f(V T

x WVxx̂(k) +
V

T

x Winu(k)).
Luckily, if we can find a selection matrix Pg ∈ R

n×q

whose columns are drawn from the n × n identity matrix,

then there is P
T

g f(WVxx̂(k)+Winu(k)) = f(PT

g WVxx̂(k)+

P
T

g Winu(k)). This is because the activation function f is

applied to each element of a vector independently, so it does

not matter whether we select the vector element using a

selection matrix P
T

g before or after the activation operation.

This indicates a possibility that we can form a network

with an evaluation time complexity independent of n, since

the new weight matrix P
T

g WVx is only q × q. This idea

can be realized by the activation function approximation via

the discrete empirical interpolation method (DEIM) [24] (a

discrete version of the empirical interpolation method [42]) as

presented in the following.

1) The framework of activation function approximation:

We will first present the framework of activation function

approximation. For convenience, we also write the activation

function as g(x(k)) = f(Wx(k) +Winu(k)).
The essence of the activation function approximation is to

find a q-dim function ĝ(x) to approximate the original n-dim

function g(x), in order to reduce the activation function eval-

uation from n times to q times. This function approximation

is expressed as:

Vg ĝ(x) ≈ g(x), (17)

where Vg ∈ R
n×q

and ĝ(x) ∈ R
q
.

By multiplying P
T

g on the residual of the approximation

in (17) and making the result to be zero, we have

P
T

g Vg ĝ(x) = P
T

g g(x), (18)

where Pg ∈ R
n×q

is a selection matrix as introduced previ-

ously. Since multiplying P
T

g to an n-dim vector is to select

q elements (from the n elements of the vector) according to

the positions of the q ones in Pg , the physical meaning of

(18) is to have the exact “approximation” at the q equations

determined by the selection matrix Pg.

From (18), ĝ(x) can be uniquely determined as

ĝ(x) = (PT

g Vg)
−1

P
T

g g(x). (19)

By combining (9), (17), and (19), we readily have

x̂(k + 1) = V
T

x Vg(P
T

g Vg)
−1

· f(PT

g WVxx̂(k) + P
T

g Winu(k)),

y(k + 1) = WoutVxx̂(k + 1),

(20)

whose computing complexity of forward propagation is inde-

pendent of n now. Please note that we have used the property

P
T

g f(WVxx̂(k)+Winu(k)) = f(PT

g WVxx̂(k)+P
T

g Winu(k))
since Pg is a selection matrix.

2) Forming the activation function approximation matrices:

As presented previously, we need to build two matrices, Pg

and Vg for the activation function approximation.

We look for the Vg matrix first. Similar to the theory of

the state approximation presented in Section IV-B3, it is the

column space of Vg that determines the activation function

approximation accuracy in (17). As a result, in order to get a

good approximation, we would like the subspace spanned by

the columns of Vg to cover the main information of g(x(k)).
This is still achieved through a POD process.

In the POD process of the activation function ap-

proximation, we take samples of g(x(k)) at ns different



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

time points (i.e., take g(x(k)) with ns different k) as

{g1, g2, . . . , gns
}. Then, apply SVD to the sample matrix

G =
[

g1, g2, . . . , gns

]

∈ R
n×ns as

VgΣgU
T

g
SVD
←−−− G, (21)

where Vg ∈ R
n×ns , Σg ∈ R

ns×ns , and Ug ∈ R
ns×ns . The

final projection matrix in (17) is obtained by truncating Vg to

preserve its first q columns as

Vg ←− Vg[:, 1 : q]. (22)

Now we are ready to construct the selection matrix Pg . Let

us denote Pg = [es1 , es2 , . . . , esq ] ∈ R
n×q

, where esi is the

si-th column of the n × n identity matrix. Then, the task of

constructing Pg can be simplified to determining the index

sequence S = {s1, s2, . . . , sq}. The basic idea is to find the

indices s1, s2, . . . , sq one by one, such that the growth of the

error bound of the approximation (17) is limited in a greedy

manner, where the error bound is expressed as

‖g(x)−Vg ĝ(x)‖2 ≤ ‖(P
T

g Vg)
−1‖2·‖(I−VgV

T

g )g(x)‖2. (23)

Such procedure is described in Algorithm 1 of [24], which

will not be presented here repeatedly.

D. Stabilization of fastESN

By applying the state approximation and activation function

approximation, we have successfully generated a network

in (20) which is much smaller in size compared with the orig-

inal ESN and can be evaluated with a complexity independent

of the large original order n. Unfortunately, this small network

may not be asymptotically stable even when the original ESN

is. In this subsection, we will analyze the instability problem,

and provide a simple stabilization solution which leads to the

final form of fastESN.

1) The instability problem: The stability of a nonlinear

dynamical system at an equilibrium x0 is determined by its

Jacobian at the equilibrium J(x0): the system is asymptot-

ically stable at x0 if there is ‖J(x0)‖2 < 1. Since the

Jacobian of the original ESN at the equilibrium x0 = 0
is W for f(x) = tanh(x), the weight matrix is scaled to

satisfy ‖W‖2 < 1 in order to make the ESN stable [9] as

demonstrated graphically in Fig. 3a.

Unfortunately, the activation function approximation

through DEIM presented in Section IV-C does not preserve

the asymptotic stability property of the original ESN. For

the reduced system expressed in (20), its stability at the

equilibrium x̂0 = 0 is determined by its Jacobian

Ĵ(x̂0) = Ĵ(0) = V
T

x Vg(P
T

g Vg)
−1

P
T

g WVx. (24)

Please note that when the original ESN is stable (‖W‖2 < 1),

it is still possible to have ‖Ĵ(x̂0)‖2 > 1, because there is

‖(PT

g Vg)
−1‖2 > 1. It means that using the DEIM procedure to

approximate the activation function magnifies the Jacobian at

the equilibrium, which may cause asymptotic instability of the

reduced network. This problem will become even more severe

as the reduced order q grows. This is because ‖(PT

g Vg)
−1‖2

(which is also a component of the error bound given in (23))

(a) The original ESN is asymp-
totically stable at the equilibrium
x0 = 0 as long as ‖J(x0)‖2 =
‖W‖2 < 1.

(b) The 2-norm of the Jacobian is mag-

nified to ‖Ĵ(x̂0)‖2 > 1 by (P
T

g Vg)
−1

during the activation function approxi-
mation, causing the instability problem.

Fig. 3: Illustration of the instability problem of fastESN.

(a) Generate new nonlinear part
h(x) by subtracting Wx from
f(Wx). h(x) has zero Jacobian
at the equilibrium. The linear part
Wx inherits the Jacobian from the
original nonlinear part of ESN in
Fig. 3a.

(b) Performing function approxima-
tion to h(x) does not magnify the
2-norm of its Jacobian at the equi-
librium, since it is zero. In addition,
the 2-norm of linear term Jacobian
remains the same: ‖V

T

x WVx‖2 =
‖W‖2 < 1.

Fig. 4: Illustration of the stabilization of fastESN.

grows with the order q, leading to an increased possibility of

‖Ĵ(x̂0)‖2 > 1. Please see Fig. 3b for a graphical view of this

problem.

Experimentally, we also give one example of the instability

problem in Fig. 5a and Fig. 5b. This example is from a 50-

order network generated using the activation function approx-

imation through DEIM (called “fastESN unstabilized”) from a

200-order ESN. Both the training and testing data are the 10th

order NARMA data (NARMA10). The experimental settings

follow the ones presented later in Section V-A, except for the

dropping of the washout data. From Fig. 5a, we can see that

the reduced network is not asymptotically stable, generating

an output which oscillates around the target with a large

amplitude. To analyze the problem, the value of the reduced

network’s first state (the first element of the state vector x̂(k))
is plotted in Fig. 5b. It is observed that the state diverges

after around 50 time steps, because it is self-magnified by

the large Jacobian ‖Ĵ(x̂0)‖2 > 1 after the activation function

approximation, as shown in Fig. 3b.

2) Stabilizing fastESN: In order to obtain a reduced net-

work that is asymptotically stable, we can stabilize the DEIM

procedure by using the idea presented in [25].

For fastESN, the stabilization procedure can be very simple.

The basic idea is to decompose the nonlinear part of ESN

(i.e., f(Wx(k) + Winu(k))) into two parts (illustrated in

Fig. 4a): a nonlinear part h(x(k)) with zero Jacobian at the

equilibrium and a linear part which inherits the Jacobian of

the original nonlinear part. Then, the function approximation

is performed on h(x(k)) instead of the original nonlinear part.



WANG et al.: FASTESN: FAST ECHO STATE NETWORK 7

0 25 50 75 100 125 150
Timesteps

−80

−60

−40

−20

0

20

40

60

80

Target
fastESN unstabilized

(a) The output of the fastESN directly generated by
DEIM. The network is not asymptotically stable.

0 25 50 75 100 125 150
Timesteps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
state1

(b) Plot of the first element of x̂(k) (state1) of the
unstabilized fastESN. It is magnified by the Jaco-

bian with ‖Ĵ(x̂0)‖2 > 1, causing the instability
problem.

0 25 50 75 100 125 150
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Target
ESN
fastESN

(c) The output of the stabilized fastESN (with
label “fastESN”) with the same input. After the
stabilization, fastESN is asymptotically stable.

Fig. 5: Experimental example of the instability problem of the fastESN on the NARMA10 test bench. The network has 50-order

(q = 50) generated from an ESN network with 200 internal units (n = 200).

Since h(x(k)) has zero Jacobian at the equilibrium (Fig. 4b),

the 2-norm of its Jacobian will not be magnified to cause the

instability problem.

To realize the idea above, we perform Taylor expansion of

the original nonlinear part of ESN at the equilibrium x0 = 0
as

f(Wx(k) +Winu(k)) = J(x0)(x(k)− x0) + h(x(k))

= Wx(k) + h(x(k)).
(25)

Then, the linear part can be easily obtained as J(x0)(x(k)−
x0) or Wx(k) which inherits the original Jacobian J(x0) =
W . The new nonlinear part h(x(k)) with zero Jacobian at the

equilibrium is readily solved from (25) as

h(x(k)) = f(Wx(k) +Winu(k))−Wx(k). (26)

With the nonlinear function decomposition described above,

the original ESN in (1) can be rewritten using h(x) as

x(k + 1) = Wx(k) + h(x(k)),

y(k + 1) = Woutx(k + 1).
(27)

Next, for the activation function approximation, we apply

the approximation to h(x(k)) = f(Wx(k) + Winu(k)) −
Wx(k) instead of g(x(k)) = f(Wx(k) + Winu(k)), using

the function samples {h1, h2, . . . , hns
}, to obtain

Vhĥ(x) ≈ h(x), (28)

and

ĥ(x) = (PT

h Vh)
−1

P
T

h h(x), (29)

where Ph and Vh are the DEIM matrices generated for the new

nonlinear function h(x) by following the same steps presented

in Section IV-C2.

The final fastESN is derived by combining (27), (28), and

(29) as

x̂(k + 1) = (V T

x WVx − ÊdP
T

h WVx)x̂(k)

+ Êdf(P
T

h WVxx̂(k) + P
T

h Winu(k)),

y(k + 1) = WoutVxx̂(k + 1),

(30)

where Êd = V
T

x Vh(P
T

h Vh)
−1

.

Experimentally, if we perform the experiment on the sta-

bilized fastESN with the same settings presented in Sec-

tion IV-D1, the new system is asymptotically stable: its output

(with the label “fastESN”) tightly follows the target as given

in Fig. 5c.

By further defining

Êl = V
T

x WVx − ÊdP
T

h WVx, Ŵ = P
T

h WVx,

Ŵin = P
T

h Win, Ŵout = WoutVx,
(31)

the model in (30) becomes the standard fastESN model (4) pre-

sented earlier in Section IV-A, which concludes the fastESN

generation steps.

E. Evaluation complexity analysis of fastESN

Analysis of the evaluation complexity of fastESN expressed

in (4) (or equivalently in (30)) is straightforward as follows.

First, computing Ŵ x̂(k) and Ŵinu(k) needs q
2

and q · nin

operations, respectively. Then, the nonlinear activation func-

tion will be evaluated q times for f(·). Next, there are q
2

operations for Êdf(·) and another q
2

operations for Êlx̂(k).
Finally, Ŵoutx(k) requires q · nout operations.

In summary, the evaluation complexity of fastESN is only

O(q2 + q · nin + q · nout), (32)

which is independent of the original order n. Since there is

q ≪ n, the evaluation of fastESN can be much faster than the

evaluation of the original ESN.

F. Extension for the leaky ESN

To improve learning ability in some applications, the ESN

may contain leaky integrator units (we call such ESN as leaky

ESN in short) [29]. A leaky ESN is modeled as

x(k + 1) = (1− α)x(k) + αf(Wx(k) +Winu(k)),

y(k + 1) = Woutx(k + 1),
(33)

where α ∈ (0, 1] is the leaky rate [36].



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6: The flowchart diagram of accelerating ESN evaluation

using fastESN.

FastESN is fully compatible with the leaky ESN, which can

be easily derived as

x̂(k + 1) = (1− α)x̂(k)

+ α(V T

x WVx − ÊdP
T

h WVx)x̂(k)

+ αÊdf(P
T

h WVxx̂(k) + P
T

h Winu(k)),

y(k + 1) = WoutV
T

x x̂(k + 1),

(34)

where Vx, Ph, Vh (contained in Êd) are generated from the

state samples and function samples of the leaky ESN in (33)

by following the same generation procedures as the standard

fastESN.

G. The flow of accelerating ESN evaluation using fastESN

Algorithm 1 The fastESN generation algorithm

Input: samples {x1, x2, . . . , xns
} and {h1, h2, . . . , hns

},
ESN matrices W , Win, Wout, reduce order q

Output: fastESN matrices Êd, Êl, Ŵ , Ŵin, Ŵout

⊲ Obtain the state approximation matrix Vx

1: X ←
[

x1, x2, . . . , xns

]

2: Vx,Σx, Ux ← SVD(X)
3: Vx ← Vx[:, 1 : q]

⊲ Obtain the function approximation matrices Vh and Ph

4: H ←
[

h1, h2, . . . , hns

]

5: Vh,Σh, Uh ← SVD(H)
6: Vh ← Vh[:, 1 : q]
7: Ph ← DEIM(Vh) ⊲ DEIM process in Algorithm 1

of [24]

⊲ Generate fastESN matrices

8: Êd ← V
T

x Vh(P
T

h Vh)
−1

9: Êl ← V
T

x WVx − ÊdP
T

h WVx

10: Ŵ ← P
T

h WVx

11: Ŵin ← P
T

h Win

12: Ŵout ←WoutVx

The flowchart diagram of accelerating ESN evaluation using

fastESN is given in Fig. 6. The flow mainly contains two parts:

the offline preprocessing part, as summarized in Algorithm 1,

which generates the fastESN from the original ESN, and the

online part which evaluates the fastESN instead of the original

ESN to gain speed.

V. EXPERIMENTAL RESULTS

A. Experimental settings

The original ESNs used in the experiments are generated by

TensorFlow v2.3 using the ESN functions from TensorFlow

Addons (TFA) v0.11.2. Then we extract the original ESN

matrices and perform the rest of the experiments in Python 3

with NumPy v1.18.3, including the building of fastESN and

the evaluation of both the original ESN and fastESN. The

runtime data (fastESN generation time and network evaluation

time) are collected on a Mac computer with Intel i5-8500 CPU

(3.0GHz) and 8GB memory using a single thread.

We test fastESN on popular benchmarks used previously in

the recurrent neural network/ESN research studies: a complex

second-order problem, a two-input/two-output nonlinear sys-

tem, and two NARMA systems (NARMA10 and NARMA30).

We also test fastESN for the weather prediction task, with the

Jena climate dataset [43].

All test cases share the following experimental settings. The

connectivity ratio of the ESN internal layer is 0.1. We use

the compressed sparse row (CSR) matrix storage in SciPy to

store the sparse weight matrices (W ) of ESNs and perform

the sparse matrix-vector multiplication (SpMV) using the

default SpMV routine in SciPy. It is known that sparse matrix

computations only show speed advantages for the large sparse

matrices. In our test, the sparse matrix computation is faster

than the dense matrix computation when the order of the

original ESN exceeds 200. Since the smallest original ESN

used in this experiment has an order of 250, we use the SpMV

routine for the evaluation of all original ESNs to gain speed.

For all the experiments, the sample number to train the

original ESN is 1×105. To obtain the samples for the fastESN,

the state samples and function samples are directly drawn from

the forward propagation results during the ESN training: we

take one state sample and one function sample for every 50
time steps in training, collecting a total of 2000 state samples

and 2000 function samples (i.e., ns = 2000). The first 50
data in both training and testing samples are washout data

(the data points at the beginning of the time series which

will not be used). All the error and runtime data are recorded

by running the experiments 10 times and taking the average

measurements, unless noted explicitly.

B. Results on a complex second-order problem

First, we test fastESN using a complex second-order prob-

lem which is also used in [44]:

y(k + 1) =
y(k)y(k − 1)(y(k) + 0.25)

1 + y
2(k) + y

2(k − 1)
+ u(k), (35)

where the input u(k) is generated randomly from a uniform

distribution in [0, 0.5].
The accuracy results of the fastESN on the test data set are

plotted in Fig. 7, with the orders of the ESN and fastESN

as 1000 and 80, respectively. The result from the unstabilized

fastESN is not plotted because it may not be stable. We see

that fastESN, with only 80-order, is able to track the target

accurately with observable errors at only very few places.

It is also interesting to notice that the outputs of the state



WANG et al.: FASTESN: FAST ECHO STATE NETWORK 9

TABLE I: The error, size, and runtime comparisons of the original ESN, state approximation ESN, and fastESN tested on the

complex second-order problem in (35). In this table and also Table II, III, IV, and V, MSEt is the mean square error against

the target, MSEo is the mean square error against the original ESN output, and time is the evaluation time spent on 10,000
time steps.

ESN (sparse) state approximation ESN fastESN

order
MSEt time param

order
MSEt MSEo time param speed comp

order
MSEt MSEo time param speed comp

×10−3
(s) # ×10−3 ×10−3

(s) # up ratio ×10−3 ×10−3
(s) # up ratio

500 0.0035 0.47 26k

10 0.35 0.35 0.37 11k 1.3× 42% 10 0.35 0.35 0.17 320 2.8× 1.2%

20 0.25 0.25 0.42 21k 1.1× 81% 20 0.25 0.25 0.18 1240 2.7× 4.8%

40 0.20 0.20 0.54 41k 0.87× 158% 40 0.20 0.20 0.19 4880 2.6× 19%

80 0.027 0.024 0.77 81k 0.61× 312% 80 0.032 0.029 0.22 19k 2.2× 73%

1000 0.0022 1.3 102k

10 0.34 0.34 0.55 22k 2.3× 22% 10 0.34 0.34 0.17 320 7.5× 0.3%

20 0.25 0.25 0.63 42k 2.0× 41% 20 0.25 0.25 0.18 1240 7.2× 1.2%

40 0.22 0.22 0.87 82k 1.5× 80% 40 0.22 0.22 0.19 4880 6.8× 4.8%

80 0.026 0.024 1.4 162k 0.92× 159% 80 0.030 0.028 0.22 19k 5.7× 19%

2000 0.0016 4.5 404k

10 0.35 0.35 0.90 44k 5.0× 11% 10 0.35 0.35 0.17 320 26.4× 0.08%

20 0.25 0.25 1.1 84k 4.1× 21% 20 0.25 0.25 0.18 1240 25.3× 0.3%

40 0.23 0.22 1.5 164k 2.9× 41% 40 0.23 0.22 0.19 4880 23.3× 1.2%

80 0.035 0.033 2.7 324k 1.7× 80% 80 0.041 0.039 0.22 19k 19.9× 4.7%

0 20 40 60 80 100
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Target
ESN
State approx
fastESN

Fig. 7: The accuracy demonstration of fastESN on the complex

second-order problem in (35). The orders of the ESN and

fastESN are 1000 and 80, respectively.

0 20 40 60 80 100
Timesteps

0.35

0.40

0.45

0.50

0.55 Target
ESN
State approx
fastESN

Fig. 8: The accuracy demonstration of fastESN on the two-

input/two-output nonlinear system in (36). The orders of the

ESN and fastESN are 1000 and 80, respectively.

approximation ESN (the one presented in Section IV-B) and

the fastESN are basically indistinguishable. This means the

approximation error mainly comes from the state approxima-

tion, and the DEIM procedure does not introduce significant

error by further reducing the function dimension.

The accuracy, size, and evaluation speed results of the ESN,

the state approximation ESN, and fastESN, with different

orders, are summarized in Table I.

On the accuracy side, we observe from the table that

fastESN, with a much smaller size (parameter number),

achieves a similar accuracy compared with the state approxi-

mation ESN of the same order. Both of them are able to keep a

good evaluation accuracy, with approximation error decreases

as the order increases.

For the network size, we see that the ESN contains a large

number of parameters, even when we only count the nonzero

elements in its internal weight matrix W stored in sparse

matrix format. State approximation ESN reduces the parameter

count of ESN when its order is small enough: for the original

ESN with order 500, a 42% parameter compression ratio

is achieved by the state approximation ESN with order 10.

However, as its order increases, the size of state approximation

ESN grows fast: beyond the order 40, it even contains more

parameters than the original ESN. This is because the state

approximation ESN only reduces the dimension of the states

to the order q, resulting in n× q weight matrices which may

even require more storage than the sparsely stored n×n weight

matrix in ESN. Compared with the state approximation ESN,

the fastESN achieves a much higher parameter compression

ratio to ESN, because it has q × q weight matrices thanks to

the function dimension reduction via DEIM.

On the evaluation speed side, for some cases, it is even

slower to evaluate the state approximation ESN than the orig-

inal ESN. For example, the speedup of evaluating an 80-order

state approximation ESN, generated from a 500-order original

ESN, is 0.61× of evaluating the original ESN. This is due to



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

0 20 40 60 80 100
Timesteps

0.2

0.3

0.4

0.5

0.6

0.7 Target
ESN
State approx
fastESN

Fig. 9: The accuracy demonstration of fastESN on the

NARMA10 system in (37). The orders of the ESN and

fastESN are 1000 and 80, respectively.

the fact that the state approximation ESN cannot reduce the

function dimension as explained previously. On the other hand,

evaluating the fastESN is faster than evaluating the original

ESN. As expected, smaller order q used in fastESN always

brings forth larger speedup, because the evaluation complexity

of fastESN (expressed in equation (32)) only relates to q. The

largest speedup in the table is 26.4×, when we compare the

10-order fastESN against the 2000-order ESN.

C. Results on a two-input/two-output nonlinear system

Next, we test fastESN on a multiple-input and multiple-

output (MIMO) nonlinear system: here we use a two-

input/two-output nonlinear system described as

x1(k + 1) = 0.5x
2/3
1

(k) + 0.3x2(k)x3(k) + 0.2u1(k),

x2(k + 1) = 0.5x
2/3
2

(k) + 0.3x3(k)x1(k) + 0.5u1(k),

x3(k + 1) = 0.5x
2/3
3

(k) + 0.3x1(k)x1(k) + 0.5u2(k),

y1(k + 1) = 0.7(x1(k + 1) + x2(k + 1)),

y2(k + 1) = 1.5x2

1(k + 1),

(36)

where x1, x2, x3 are the three states, u1 and u2 are the two

inputs, y1 and y2 are the two outputs. Each input is generated

randomly from a uniform distribution in [0, 0.5]. This system

is also used in [44].

The evaluation results on the two-input/two-output nonlinear

system with 1000-order ESN and 80-order fastESN are plotted

in Fig. 8. The accuracy and evaluation speed results of

the ESN, the state approximation ESN, and fastESN, with

different orders, are summarized in Table II.

Since this test system is a MIMO system, fastESN needs

to capture the system information for all input-output pairs,

which is more difficult than the previous task. From Fig. 8

and Table II, we see very similar results except for slightly

larger errors for both ESN and fastESN, compared with the

previous results for the complex second-order problem. This

indicates that fastESN is compatible with the ESN for the

MIMO system.

0 20 40 60 80 100
Timesteps

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 Target
ESN
State approx
fastESN

Fig. 10: The accuracy demonstration of fastESN on the

NARMA30 system in (38). The orders of the ESN and

fastESN are 1000 and 80, respectively.

D. Results on two NARMA systems

We also test these networks on two NARMA systems: a 10th

order one (NARMA10) and a 30th order one (NARMA30).

The NARMA10 system is given as

y(k + 1) = 0.3y(k) + 0.05y(k)

9
∑

i=0

y(k − i)

+ 1.5u(k − 9)u(k) + 0.1,

(37)

and the NARMA30 system is expressed as

y(k + 1) = 0.2y(k) + 0.04y(k)
29
∑

i=0

y(k − i)

+ 1.5u(k − 29)u(k) + 0.001,

(38)

From (37) and (38), we see the order of a NARMA system

is defined as the number of its largest delay time steps. Both of

the two NARMA systems feature a long delay in time, thus

they are often used to test the learning ability of long-term

time dependencies. They also appear in [31], [38], [44].

The evaluation results on NARMA10 and NARMA30 are

plotted in Fig. 9 and Fig. 10, respectively. The accuracy and

evaluation speed results of different networks with different

orders are summarized in Table III and Table IV.

As expected, we see that the NARMA systems, due to their

long time delay, are more difficult to learn than the previous

systems (35) and (36). On NARMA10, the original ESN has

larger errors than on the previous systems. The errors become

even larger on NARMA30 because of its even longer time

delay.

Except for the shared similarities with the previous results,

we see that the fastESN achieves similar accuracy against

target compared with the original ESN on the NARMA30

benchmark. The reason for this phenomenon is found by

further looking at the errors against the original ESN (MSEo):

as the fastESN order grows, MSEo drops fast and may become

the secondary error source against the target. In this situation,

the main component of the error against the target for fastESN

is the error of the original ESN.

It is also interesting to see that the fastESN of a fixed

order is usually less accurate against the original (with larger



WANG et al.: FASTESN: FAST ECHO STATE NETWORK 11

TABLE II: The error, size, and runtime comparisons of the original ESN, state approximation ESN, and fastESN tested on the

two-input/two-output nonlinear system in (36).

ESN (sparse) state approximation ESN fastESN

order
MSEt time param

order
MSEt MSEo time param speed comp

order
MSEt MSEo time param speed comp

×10−3
(s) # ×10−3 ×10−3

(s) # up ratio ×10−3 ×10−3
(s) # up ratio

500 0.011 0.49 27k

10 0.32 0.31 0.38 12k 1.3× 44% 10 0.32 0.31 0.17 340 2.8× 1.3%

20 0.25 0.24 0.43 22k 1.1× 81% 20 0.25 0.24 0.18 1280 2.7× 4.7%

40 0.16 0.14 0.55 42k 0.89× 156% 40 0.16 0.14 0.19 4960 2.5× 18%

80 0.032 0.022 0.77 82k 0.63× 304% 80 0.034 0.024 0.22 20k 2.1× 74%

1000 0.0066 1.3 104k

10 0.32 0.31 0.55 24k 2.3× 23% 10 0.32 0.31 0.17 340 7.3× 0.3%

20 0.22 0.22 0.63 44k 2.0× 42% 20 0.22 0.22 0.18 1280 7.1× 1.2%

40 0.15 0.15 0.88 84k 1.4× 81% 40 0.15 0.15 0.19 4960 6.7× 4.8%

80 0.081 0.075 1.3 164k 0.94× 158% 80 0.082 0.075 0.22 20k 5.7× 19%

2000 0.0045 4.6 408k

10 0.33 0.32 0.89 48k 5.1× 12% 10 0.33 0.32 0.18 340 25.7× 0.08%

20 0.24 0.24 1.1 88k 4.3× 22% 20 0.24 0.24 0.18 1280 24.7× 0.3%

40 0.15 0.15 1.6 168k 2.9× 41% 40 0.15 0.15 0.20 4960 23.1× 1.2%

80 0.088 0.083 2.7 328k 1.7× 80% 80 0.088 0.084 0.23 20k 20.0× 4.9%

TABLE III: The error, size, and runtime comparisons of the original ESN, state approximation ESN, and fastESN tested on

the NARMA10 system in (37).

ESN (sparse) state approximation ESN fastESN

order
MSEt time param

order
MSEt MSEo time param speed comp

order
MSEt MSEo time param speed comp

×10−3
(s) # ×10−3 ×10−3

(s) # up ratio ×10−3 ×10−3
(s) # up ratio

500 0.13 0.48 26k

10 4.9 4.8 0.37 11k 1.3× 42% 10 4.9 4.8 0.17 320 2.8× 1.2%

20 1.7 1.6 0.42 21k 1.1× 81% 20 1.7 1.6 0.17 1240 2.7× 4.8%

40 1.6 1.5 0.54 41k 0.88× 158% 40 1.6 1.5 0.18 4880 2.6× 19%

80 1.3 1.2 0.78 81k 0.61× 312% 80 1.3 1.2 0.21 19k 2.1× 73%

1000 0.069 1.2 102k

10 4.9 4.8 0.55 22k 2.3× 22% 10 4.9 4.8 0.17 320 7.5× 0.3%

20 1.7 1.6 0.64 42k 1.9× 41% 20 1.7 1.6 0.17 1240 7.3× 1.2%

40 1.6 1.5 0.87 82k 1.4× 80% 40 1.6 1.5 0.18 4880 6.8× 4.8%

80 1.4 1.3 1.4 162k 0.90× 159% 80 1.4 1.3 0.22 19k 5.8× 19%

2000 0.037 4.6 404k

10 4.9 4.8 0.92 44k 4.9× 11% 10 4.9 4.8 0.18 320 25.7× 0.08%

20 1.7 1.6 1.1 84k 4.3× 21% 20 1.7 1.6 0.19 1240 23.7× 0.3%

40 1.6 1.6 1.6 164k 2.9× 41% 40 1.6 1.6 0.18 4880 24.7× 1.2%

80 1.4 1.4 2.7 324k 1.7× 80% 80 1.4 1.4 0.22 19k 20.7× 4.7%

TABLE IV: The error, size, and runtime comparisons of the original ESN, state approximation ESN, and fastESN tested on

the NARMA30 system in (38).

ESN (sparse) state approximation ESN fastESN

order
MSEt time param

order
MSEt MSEo time param speed comp

order
MSEt MSEo time param speed comp

×10−3
(s) # ×10−3 ×10−3

(s) # up ratio ×10−3 ×10−3
(s) # up ratio

500 1.2 0.48 26k

10 4.9 3.8 0.37 11k 1.3× 42% 10 4.9 3.8 0.17 320 2.8× 1.2%

20 4.9 3.7 0.41 21k 1.1× 81% 20 4.9 3.7 0.17 1240 2.8× 4.8%

40 1.6 0.51 0.54 41k 0.88× 158% 40 1.6 0.51 0.18 4880 2.6× 19%

80 1.3 0.21 0.77 81k 0.62× 312% 80 1.4 0.21 0.21 19k 2.2× 73%

1000 0.69 1.3 102k

10 4.9 4.3 0.56 22k 2.3× 22% 10 4.9 4.3 0.17 320 7.5× 0.3%

20 5.0 4.3 0.62 42k 2.0× 41% 20 5.0 4.3 0.17 1240 7.5× 1.2%

40 1.7 1.0 0.86 82k 1.5× 80% 40 1.7 1.0 0.18 4880 7.1× 4.8%

80 1.3 0.69 1.4 162k 0.88× 159% 80 1.3 0.69 0.21 19k 6.0× 19%

2000 0.18 4.5 404k

10 4.9 4.7 0.90 44k 5.0× 11% 10 4.9 4.7 0.18 320 25.4× 0.08%

20 4.9 4.7 1.1 84k 4.3× 21% 20 4.9 4.7 0.17 1240 26.0× 0.3%

40 1.7 1.5 1.6 164k 2.9× 41% 40 1.7 1.5 0.18 4880 24.7× 1.2%

80 1.3 1.2 2.7 324k 1.7× 80% 80 1.3 1.2 0.21 19k 21.0× 4.7%



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

0 20 40 60 80 100
Timesteps

14

16

18

20

22

Te
m

pe
ra

tu
re

 (
∘
C∘

Target
ESN
State approx
fastESN

Fig. 11: The accuracy demonstration of fastESN for the

weather prediction task on the Jena climate dataset. The orders

of the ESN and fastESN are 1000 and 80, respectively.

MSEo), when it is generated from a larger ESN. This is simply

caused by the fact that the fastESN (of a fixed order) generated

from a larger ESN has a higher parameter compression ratio,

and a higher compression ratio leads to more accuracy loss.

E. Results on the Jena Climate Dataset

We also test fastESN for the weather prediction task on the

widely used Jena Climate Dataset [43] recorded by the Max

Planck Institute for Biogeochemistry. The data used in this

experiment are recorded every ten minutes from January 10,

2009 to December 31, 2016. We take 7 features (pressure,

temperature, saturation vapor pressure, vapor pressure deficit,

specific humidity, airtight and wind speed) sampled every 30

minutes as the inputs of the ESNs. The data of each feature

are normalized to [−1, 1] and smoothed using a 5-step sliding

window. The output of the ESNs is the temperature at the next

time step.

The weather prediction results on the Jena climate dataset

with 1000-order ESN and 80-order fastESN are plotted in

Fig. 11. We see that fastESN produces a prediction result

almost indistinguishable from that of the original ESN, in-

dicating the high accuracy of the fastESN.

The accuracy and evaluation speed results of the ESN, the

state approximation ESN, and fastESN, with different orders

on the Jena climate dataset, are summarized in Table V.

Please note that the errors appear larger on this benchmark

than on the previous benchmarks, only because the absolute

target values (temperatures with the largest value over 20)

are larger compared with the previous benchmarks (with the

largest target value below 1). The errors of fastESN decrease

fast with the increase of its order. At the order of 80, fastESN

has a mean squared prediction error as small as 0.40× 10−2

against the 1000-order original ESN. In this case, the mean

squared error of the 80-order fastESN against the target

((MSEt = 1.1× 10−2
)) is only slightly larger than that of the

1000-order original ESN (MSEt = 0.74× 10−2
), because the

main error source is the error of the original ESN against the

target. With this order 80, fastESN achieves a 5.9× speed up

and a 19% compression ratio against the 1000-order original

ESN, indicating a good performance of fastESN on this real-

world benchmark.

F. Comparison between fastESN and ESN of the same size

One advantage of fastESN is that its generation process

does not require training data, such that it can accelerate

the evaluation of a trained large ESN deployed to hardware

without any training data available. But here we still compare

the performance of fastESN and a re-trained ESN of the same

order, by assuming the training data is available.

This test is conducted on all benchmarks mentioned above,

and the order of the trained original ESN (which is only used

to build the fastESN here) is 500. The re-trained ESN (of the

same order as fastESN) is trained using the same training data

used to train the original ESN. All accuracy results in this part

are recorded by running the experiments 50 times and taking

the average measurements.

The accuracy comparison results of fastESN and ESN with

orders 10, 20, 40, and 80, are shown in Fig. 12. We see that

fastESN is more accurate than the ESN of the same order in

most cases. There are some cases where the re-trained ESN

achieves a higher accuracy such as for the orders 20 and 40
on the second-order problem benchmark, but the errors are

already extremely small (MSEt < 3×10−4
) for both networks.

G. The fastESN generation results

In the end, we experimentally analyze the fastESN genera-

tion process, i.e. the procedure performed offline, as listed in

Algorithm 1. The results of generating fastESNs from a 1000-

order ESN on the NARMA10 system with different settings

are collected in Table VI. Since the fastESN generation in

Algorithm 1 mainly contains the state approximation (from

line 1 to line 3) and function approximation (from line 4 to

line 7), we also record their runtimes individually.

From Table VI, we can see that the fastESN generation

time mainly depends on the sample number used: using

more samples will slow down the fastESN generation speed

significantly. This is because more samples will make the

sample matrices X and H wider, leading to slower SVD

processes (line 2 and line 5 in Algorithm 1). We also notice

that overly increasing the sample number does not necessarily

lead to a significant improvement in accuracy: we hardly get

any accuracy improvements when we use over 1000 samples

as shown in Table VI. This indicates a good trade-off: we can

reduce the sample number to gain speed with limited accuracy

sacrifice if the original sample number is too large.

On the other hand, we observe that although fastESN can

be generated slightly faster with a smaller order, the fastESN

order has a smaller impact on the network generation speed

than the sample number. Since a larger order of fastESN means

slower online evaluation and higher approximation accuracy,

a proper order should be chosen mainly by balancing the

network evaluation speed and accuracy, instead of considering

the network generation speed.

H. Summary of results

In summary, fastESN shows a high parameter compres-

sion ratio and a significant evaluation speedup on all test

benchmarks. This result is achieved because fastESN not only



WANG et al.: FASTESN: FAST ECHO STATE NETWORK 13

TABLE V: The error, size, and runtime comparisons of the original ESN, state approximation ESN, and fastESN tested on the

Jena climate dataset.

ESN (sparse) state approximation ESN fastESN

order
MSEt time param

order
MSEt MSEo time param speed comp

order
MSEt MSEo time param speed comp

×10−2
(s) # ×10−2 ×10−2

(s) # up ratio ×10−2 ×10−2
(s) # up ratio

250 0.90 0.32 8250

10 20.5 19.7 0.29 7000 1.1× 85% 10 24.2 23.4 0.18 380 1.8× 4.6%

20 4.6 3.7 0.34 12k 0.92× 145% 20 6.0 5.0 0.18 1360 1.8× 16%

40 1.7 0.76 0.41 22k 0.77× 267% 40 2.2 1.3 0.19 5120 1.6× 62%

80 1.1 0.20 0.53 42k 0.59× 509% 80 1.2 0.27 0.23 20k 1.4× 242%

500 0.81 0.53 29k

10 21.3 20.6 0.41 14k 1.3× 48% 10 24.0 23.3 0.18 380 2.9× 1.3%

20 4.4 3.7 0.45 24k 1.2× 83% 20 5.0 4.3 0.18 1360 2.9× 4.7%

40 1.9 1.1 0.57 44k 0.90× 152% 40 2.2 1.4 0.19 5120 2.7× 18%

80 1.1 0.30 0.80 84k 0.64× 290% 80 1.2 0.41 0.22 20k 2.3× 68%

1000 0.74 1.3 108k

10 23.0 22.4 0.62 28k 2.2× 26% 10 25.4 24.8 0.18 380 7.6× 0.4%

20 5.5 4.8 0.69 48k 2.0× 44% 20 6.3 5.6 0.18 1360 7.5× 1.3%

40 1.8 1.0 0.93 88k 1.4× 81% 40 1.9 1.2 0.19 5120 7.0× 4.7%

80 1.1 0.35 1.4 168k 0.95× 156% 80 1.1 0.40 0.22 20k 5.9× 19%

10 20 40 80

order

0

1

2

3

4

5

6

7

M
S

E
t

10
-4

ESN

fastESN

(a) Second-order.

10 20 40 80

order

0

0.2

0.4

0.6

0.8

1

1.2

M
S

E
t

10
-3

ESN

fastESN

(b) Two-input/two-output.

10 20 40 80

order

0

1

2

3

4

5

6

7

M
S

E
t

10
-3

ESN

fastESN

(c) NARMA10.

10 20 40 80

order

0

1

2

3

4

5

M
S

E
t

10
-3

ESN

fastESN

(d) NARMA30.

10 20 40 80

order

0

0.1

0.2

0.3

0.4

0.5

0.6

M
S

E
t

ESN

fastESN

(e) Climate.

Fig. 12: The accuracy demonstration of fastESN and ESN with the same order on different benchmarks. Here, the fastESNs

are generated from 500-order original ESNs.

reduces the state dimension but also reduces the function

dimension. By generating a fastESN with q×q weight matrices

from an original n×n ESN, we can lower the memory require-

ment and reach the time complexity of O(q2+q ·nin+q ·nout)
for the first time in ESN evaluation.

VI. LIMITATIONS AND FUTURE WORK

FastESN is not perfect and the research of ESN acceleration

has a lot of opportunities. Here we list some known limitations

of fastESN and the corresponding research directions that the

community and we can explore in the future.

First, right now we just use POD with simple time domain

sampling strategies to generate the projection matrices for

both state approximation and function approximation. In the

future, we would like to find a new method with an advanced

sampling scheme to increase the fastESN accuracy.

Second, fastESN is a fully connected network, which limits

its acceleration ratio. In the future, we want to find a new

scheme to generate fastESN that preserves the connectivity

ratio of the original ESN, or propose a sparsification technique

to further accelerate fastESN.

Third, fastESN has an extra layer compared with the original

ESN, which introduces two additional matrix multiplications

Êlx̂(k) and Êdf(·). In the future, we wish to find a reduced

network which has the same structure as the standard ESN,

just purely smaller.

Fourth, there are many new muti-layered ESN structures

proposed recently [45], [46]. We think extending fastESN to

support these new ESN structures is a very important research

direction.

Last but not least, although fastESN works for multi-input

applications, it does not work well for the applications with

extremely high-dimensional inputs. As a result, developing

an evaluation acceleration method which compresses both the

internal state dimension and the input dimension of ESNs is

desired.

VII. CONCLUSION

In this article, we have presented the fast echo state network

(fastESN), which enables an ESN evaluation complexity of

O(q2 + q · nin + q · nout) for the first time. FastESN is

generated from an ESN using three techniques including the

state approximation, the activation function approximation,

and a stabilization technique. The new network is smaller in

size than the ESN, thus it can be evaluated with a lower

computational complexity independent of the original ESN



14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VI: The comparison of generation time and ap-

proximation error of fastESNs with different fastESN orders

and sample numbers. All of these fastESNs are generated

from a 1000-order ESN on NARMA10 data from (37). The

time measurements of the state approximation step and the

activation function approximation step are recorded in columns

“state” and “function” respectively.

fastESN sample generation time (s) MSEo

order # state function total ×10−3

10

2000 0.72 0.74 1.5 3.2

1000 0.36 0.37 0.73 3.2

500 0.098 0.098 0.20 3.3

250 0.027 0.032 0.059 3.3

125 0.010 0.015 0.024 4.1

20

2000 0.71 0.72 1.4 1.6

1000 0.36 0.37 0.73 1.6

500 0.10 0.10 0.20 1.7

250 0.029 0.033 0.062 1.7

125 0.011 0.018 0.028 1.8

40

2000 0.71 0.71 1.4 1.6

1000 0.36 0.37 0.73 1.6

500 0.098 0.11 0.20 1.7

250 0.026 0.039 0.065 1.8

125 0.012 0.021 0.033 1.9

80

2000 0.70 0.73 1.4 1.3

1000 0.37 0.38 0.75 1.3

500 0.096 0.12 0.22 1.4

250 0.028 0.052 0.080 1.6

125 0.010 0.039 0.049 2.5

order. Experiments on four popular test benchmarks reveal

that fastESN is able to accelerate the evaluation of sparsely

stored ESN with a high parameter compression ratio and a fast

evaluation speed.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
Press, 2016.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–489, January 2016.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Hor-
gan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou,
M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,
D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang,
T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney,
O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver, “Grandmaster level in StarCraft II using multi-agent
reinforcement learning,” Nature, vol. 575, pp. 350–354, October 2019.

[4] P. A. Beerel and M. Pedram, “Opportunities for machine learning in
electronic design automation,” in Proc. IEEE Int. Symp. on Circuits and

Systems (ISCAS), May 2018.

[5] W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang, and P.-E.
Gaillardon, “LSOracle: a logic synthesis framework driven by artificial
intelligence,” in Proc. Int. Conf. on Computer Aided Design (ICCAD),
November 2019.

[6] H. Wang, T. Xiao, D. Huang, L. Zhang, C. Zhang, H. Tang, and
Y. Yuan, “Runtime stress estimation for three-dimensional IC reliability
management using artificial neural network,” ACM Trans. on Design

Automation of Electronic Systems, vol. 24, no. 6, pp. 69:1–69:29,
November 2019.

[7] H. Wang, X. Guo, S. X.-D. Tan, C. Zhang, H. Tang, and Y. Yuan,
“Leakage-aware predictive thermal management for multi-core systems
using echo state network,” IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 39, no. 7, pp. 1400–1413, July
2020.

[8] W. Jin, S. Sadiqbatcha, J. Zhang, and S. X.-D. Tan, “Full-chip thermal
map estimation for commercial multi-core CPUs with generative adver-
sarial learning,” in Proc. Int. Conf. on Computer Aided Design (ICCAD),
November 2020.

[9] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks,” GMD - German National Research Institute for
Computer Science, Tech. Rep., 2001.

[10] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: a new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
November 2002.

[11] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, April 2004.

[12] D. Li, M. Han, and J. Wang, “Chaotic time series prediction based on a
novel robust echo state network,” IEEE Trans. on Neural Networks and

Learning Systems, vol. 23, no. 5, pp. 787–799, May 2012.
[13] M. Xu and M. Han, “Adaptive elastic echo state network for multivariate

time series prediction,” IEEE Trans. on Cybernetics, vol. 46, no. 10, pp.
2173–2183, October 2016.

[14] A. Rodan and P. Tiňo, “Minimum complexity echo state network,” IEEE

Trans. on Neural Networks, vol. 22, no. 1, pp. 131–144, January 2011.
[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and

connections for efficient neural network,” in Proc. Conf. on Neural

Information Processing Systems (NeurIPS), December 2015, pp. 1135–
1143.

[16] S. Chen and Q. Zhao, “Shallowing deep networks: Layer-wise pruning
based on feature representations,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 41, no. 12, pp. 3048–3056, December 2019.
[17] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and W. Lin, “ThiNet:

Pruning CNN filters for a thinner net,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 41, no. 10, pp. 2525–2538, October 2019.
[18] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional

neural networks with low rank expansions,” in Proc. British Machine

Vision Conf. (BMVC), September 2014.
[19] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep con-

volutional networks for classification and detection,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, vol. 38, no. 10, pp. 1943–
1955, October 2016.

[20] F. M. Bianchi, E. De Santis, A. Rizzi, and A. Sadeghian, “Short-
term electric load forecasting using echo state networks and PCA
decomposition,” IEEE Access, vol. 3, pp. 1931–1943, 2015.

[21] L. Boccato, A. Lopes, R. Attux, and F. J. Von Zuben, “An extended echo
state network using volterra filtering and principal component analysis,”
Neural Networks, vol. 32, pp. 292–302, August 2012.

[22] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal
decomposition in the analysis of turbulent flows,” Annual Review of

Fluid Mechanics, vol. 25, pp. 539–575, 1993.
[23] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based

model reduction methods for parametric dynamical systems,” SIAM

Review, vol. 57, no. 4, pp. 483–531, 2015.
[24] S. Chaturantabut, “Nonlinear model reduction via discrete empirical

interpolation,” Ph.D. dissertation, Rice University, May 2011.
[25] A. Hochman, B. N. Bond, and J. K. White, “A stabilized discrete em-

pirical interpolation method for model reduction of electrical, thermal,
and microelectromechanical systems,” in Proc. Design Automation Conf.

(DAC), June 2011.
[26] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured

sparsity in deep neural networks,” in Proc. Conf. on Neural Information

Processing Systems (NeurIPS), December 2016, pp. 2082–2090.
[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters

for efficient ConvNets,” in Proc. Int. Conf. on Learning Representations

(ICLR), 2017.
[28] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,

“Exploring the granularity of sparsity in convolutional neural networks,”
in Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 13–20.



WANG et al.: FASTESN: FAST ECHO STATE NETWORK 15

[29] H. Jaeger, M. Lukoševičius, P. Dan, and U. Siewert, “Optimization
and applications of echo state networks with leaky-integrator neurons,”
Neural Networks, vol. 20, no. 3, pp. 335–352, 2007.

[30] J. J. Steil, “Online reservoir adaptation by intrinsic plasticity for
backpropagation-decorrelation and echo state learning,” Neural Net-

works, vol. 20, no. 3, pp. 353–364, April 2007.
[31] B. Schrauwen, M. Wardermann, D. Verstraeten, J. J. Steil, and

D. Stroobandt, “Improving reservoirs using intrinsic plasticity,” Neu-

rocomputing, vol. 71, no. 7–9, pp. 1159–1171, March 2008.
[32] C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep reservoir computing:

A critical experimental analysis,” Neural Computation, vol. 268, pp.
87–99, December 2017.

[33] J. Qiao, F. Li, H. Han, and W. Li, “Growing echo-state network with
multiple subreservoirs,” IEEE Trans. on Neural Networks and Learning

Systems, vol. 28, no. 2, pp. 391–404, February 2017.
[34] A. Rodan and P. Tiňo, “Simple deterministically constructed cycle

reservoirs with regular jumps,” Neural Computation, vol. 24, no. 7, pp.
1822–1852, July 2012.

[35] S. Løkse, F. M. Bianchi, and R. Jenssen, “Training echo state networks
with regularization through dimensionality reduction,” Cognitive Com-

putation, vol. 9, pp. 364–378, 2017.
[36] M. Lukoševičius, “A practical guide to applying echo state networks,”

in Neural Networks: Tricks of the Trade, G. Montavon, G. B. Orr, and
K.-R. Müller, Eds. Springer, Berlin, Heidelberg, 2012, ch. 27, pp.
659–686.

[37] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. Int. Conf. on Machine Learning

(ICML), 2013, pp. 1310–1318.
[38] H. Jaeger, “Adaptive nonlinear system identification with echo state

networks,” in Proc. Conf. on Neural Information Processing Systems

(NeurIPS), January 2002, pp. 609–616.
[39] A. Elafrou, G. Goumas, and N. Koziris, “Performance analysis and

optimization of sparse matrix-vector multiplication on modern multi-
and many-core processors,” in Proc. Int. Conf. on Parallel Processing

(ICPP), August 2017, pp. 292–301.
[40] H. Wang, S. X.-D. Tan, and R. Rakib, “Compact modeling of inter-

connect circuits over wide frequency band by adaptive complex-valued
sampling method,” ACM Trans. on Design Automation of Electronic

Systems, vol. 17, no. 1, pp. 5:1–5:22, January 2012.
[41] H. Wang, J. Wan, S. X.-D. Tan, C. Zhang, H. Tang, Y. Yuan, K. Huang,

and Z. Zhang, “A fast leakage-aware full-chip transient thermal estima-
tion method,” IEEE Trans. on Computers, vol. 67, no. 5, pp. 617–630,
May 2018.

[42] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, “An ‘empirical
interpolation’ method: application to efficient reduced-basis discretiza-
tion of partial differential equations,” Comptes Rendus Mathematique,
vol. 339, no. 9, pp. 667–672, November 2004.

[43] Jena Climate Dataset. [Online]. Available: www.bgc-jena.mpg.de/wetter
[44] A. F. Atiya and A. G. Parlos, “New results on recurrent network training:

Unifying the algorithms and accelerating convergence,” IEEE Trans. on

Neural Networks, vol. 11, no. 3, pp. 697–709, May 2000.
[45] Z. K. Malik, A. Hussain, and Q. J. Wu, “Multilayered echo state ma-

chine: A novel architecture and algorithm,” IEEE Trans. on Cybernetics,
vol. 47, no. 4, pp. 946–959, April 2017.

[46] Q. Ma, L. Shen, and G. W. Cottrell, “DeePr-ESN: A deep projection-
encoding echo-state network,” Information Sciences, vol. 511, pp. 152–
171, February 2020.

Hai Wang received the B.S. degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 2007, and the M.S. and Ph.D.
degrees from the University of California at River-
side, Riverside, CA, USA, in 2008 and 2012, respec-
tively.

He is currently an associate professor with the
University of Electronic Science and Technology
of China, Chengdu, China. His research interests
include design automation of VLSI circuits and
systems, software/hardware codesign of computer

systems, and artificial intelligence algorithms and hardwares.
Dr. Wang was a recipient of the Best Paper Award nomination from

Asia and South Pacific Design Automation Conference (ASP-DAC) in 2019
at Tokyo, Japan. He has served as a Organizing Committee Member of
International Conference on Computer Design (ICCD), Technical Program
Committee Member of Design, Automation and Test in Europe Conference
(DATE), Asia and South Pacific Design Automation Conference (ASP-DAC),
International Green and Sustainable Computing Conference (IGSC) and
International Symposium on Quality Electronic Design (ISQED), and also
served as a Reviewer of many journals including the IEEE Transactions on
Computers, the IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, the IEEE Transactions on Parallel and Distributed Sys-
tems, and ACM Transactions on Design Automation of Electronic Systems.

Xingyi Long received the B.S. degree from the
University of Electronic Science and Technology of
China, Chengdu, China, in 2019. He is currently
working toward the master’s degree at the University
of Electronic Science and Technology of China. His
current research interests include power analysis and
thermal management of integrated circuits, and ac-
celeration techniques for recurrent neural networks.

Xue-Xin Liu received the B.S. and M.S. degrees
from Fudan University, Shanghai, China, in 2005
and 2008, respectively and the Ph.D. degree from
the University of California at Riverside, Riverside,
CA, USA, in 2013.

He is currently with Pure Storage, Inc., Moun-
tain View, CA, USA. His research interests include
numerical analysis, circuit simulation, and parallel
computing techniques.


