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Abstract—Accurate and fast reliability management is im-
portant for 3D integrated circuits (3D ICs) because of the
severe on-chip thermal and reliability problems. However, due
to the lack of stress information and difficulties in implementing
management method for reliability, existing full-chip reliability
management methods suffer from low management accuracy and
high system performance degradation. In this work, we propose
a new stress and thermal aware reliability management method
for 3D ICs called STREAM. Unlike traditional methods which
do not perform explicit stress analysis due to the large computing
cost, STREAM employs an artificial neural network (ANN) based
stress model to estimate stress accurately at runtime. In order
to further improve the reliability management accuracy and
improve the system performance, a lifetime estimator with life-
time banking technology and a specially-designed lifetime model
predictive control are integrated into the reliability management
framework. Our numerical results show that STREAM performs
the stress and thermal aware full-chip reliability management
with both high accuracy and speed. It is able to boost the
performance of 3D ICs and outperforms the state-of-the-art 3D
IC reliability management method.

Index Terms—Reliability management, stress and thermal
aware, 3D IC, model predictive control, artificial neural network.

I. INTRODUCTION

3D integrated circuits (3D ICs) exploit z-direction of tradi-

tional 2D IC by integrating multiple silicon layers vertically

using through-silicon vias (TSV) to achieve performance im-

provements [1]. A 3D IC consisting of two layers connected

by TSVs is shown in Fig. 1. Although 3D IC has many ad-

vantages, its stacked structure brings about severe thermal and

reliability problems, because it has higher power density than

traditional 2D IC chips. These problems are very challenging

and are the major obstacles that prevent the commercializing

of 3D IC [2], [3].

Many researches have been done to solve the thermal issues

of 3D ICs. Wang et al. focused on 3D thermal modeling
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Fig. 1: A 3D IC microprocessor with two layers connected by

TSVs.

(a) Longitudinal-section view. (b) Cross-section view.

Fig. 2: Structure of a TSV used in 3D IC. The TSV is filled

with Cu and contains a SiO2 liner.

and analysis [4]. A TSV placement technique was proposed

in [5] to minimize lateral heat blockages caused by TSV

structures in 3D ICs. Cong et al. developed thermal-aware

placement approaches for 3D ICs to reduce the maximum

on-chip temperature [6], [7]. Dynamic thermal management

methods for 3D IC systems were proposed in [8], [9], [10],

[11]. However, these researches only consider temperature

itself, with reliability issues of 3D ICs ignored.

Different from traditional IC chips, 3D ICs contain a special

component TSV, whose structure is shown in Fig. 2. Because

of the existence of TSV, temperature has a much more complex

impact on the final reliability of 3D ICs. As a result, simple

temperature distribution optimization does not necessarily lead

to good reliability anymore for 3D ICs. Recently, many

researches have been done directly on the reliability issues

of 3D ICs [12], [13], [14]. Among these issues, reliability

problems caused by stress, especially TSV induced stress, have

the most significant impact: the tensile stress generated by

thermal coefficient mismatching of TSV and silicon can cause

reliability problems such as cracking and timing violation [15].

To solve these problems, some techniques such as TSV

tapering and TSV placement were introduced in [16], [17],

[18] for 3D IC design and manufacturing.
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Besides performing reliability optimization at design or

manufacturing stage using techniques mentioned above, relia-

bility management at runtime is also important to guarantee the

safety and enhance the performance of 3D ICs. To consider

runtime reliability issues, one critical aspect is to correctly

estimate reliability information of 3D ICs. Some existing

methods rely on finite element methods (FEM) [19], [20].

However, FEM is too expensive to be used for runtime reli-

ability management because of its large computing overhead.

In order to perform the runtime reliability management, the

approximate expression of reliability information for 3D ICs

is used in [21]. But such approximate expression sacrifices

accuracy and may lead to poor management results. On the

other hand, there are very few control methodologies proposed

for 3D IC runtime reliability management. The state-of-the-

art 3D IC reliability management work [21] uses a primitive

control scheme to avoid the thermal and reliability violations

of 3D ICs. This scheme does not lead to good reliability

control quality, and cannot boost 3D IC performance even

when the chip is totally safe in reliability.

In this article, we propose a new stress and thermal aware

runtime reliability management method for 3D ICs, called

STREAM, to mitigate the mentioned problems in the existing

3D IC reliability management. STREAM contains three novel

components: an artificial neural network (ANN) based stress

model for runtime stress estimation, a lifetime estimator with

lifetime banking technique to boost system performance, and

a specially designed model predictive control method called

lifetime MPC to improve the control quality in reliability

management. With these new components, STREAM is able

to fully exploit the performance potential of the 3D IC system

and still keep its designed operating lifetime.

The remaining part of this article is organized as follows. In

Section II, we first review some important work in reliability

management. Next, in Section III, we present the thermal and

reliability models of 3D ICs used in STREAM. Then, we

demonstrate STREAM, which is the new stress and thermal

aware runtime reliability management method for 3D ICs, in

Section IV. The experimental results showing the performance

of STREAM are presented in Section V. Finally, Section VI

concludes this article.

II. RELATED WORK AND MOTIVATION

In this section, we briefly review some important researches

in reliability management, especially in 3D IC stress-aware

reliability management.

Reliability modeling and estimation of microprocessor at

the architecture level were studied in [22], [23], [24]. Among

them, temperature-related reliability aware microprocessor

model (RAMP) [22] is well known for considering major fail-

ure mechanisms in integrated circuits and computing an overall

mean time to failure (MTTF). RAMP model is extended

to interconnect lifetime prediction and many-core systems

in [25], [26]. In order to increase the accuracy of RAMP

model, a hierarchical reliability modeling framework based on

Monte Carlo technique was studied in [27].

A dynamic reliability management method was introduced

in [28]. This method uses reliability banking strategy which

reserves reliability banking on light load, and temporarily

boost chip performance by consuming the reserved reliability

banking when system load is heavy. A dynamic reliability

management based on workload driven conditions with bank-

ing strategy was developed in [29]. Ideas similar to the banking

strategy were also applied to electromigration (EM) reliability

management problems [30], [31]. For network-on-chip based

microprocessors, a dynamic reliability management scheme

was introduced in [32]. However, these methods mainly con-

sider traditional integrated circuit structures, and cannot handle

3D IC when TSV induced stress is a main reliability concern.

TSV structures are used in 3D ICs to connect multiple

die layers in the vertical direction, which also cause some

reliability problems. The TSV stress induced reliability prob-

lems have been studied in [13], [14]. TSV tapering techniques

have been proposed in [16] to alleviate the power and thermal

issues of 3D IC. There are also static stress-aware reliability

managements proposed by adjusting the TSV keep-out zone

size, TSV placement, or TSV structures in [17], [18].

For runtime stress-aware reliability management, a runtime

thermal management technique considering TSV stress in-

duced reliability problems was proposed in [21]. It relieves

TSV induced stress by eliminating the temperature gradients

on each layer of the chip, and also considers thermal cycling

effect. However, this work does not quantify the influence of

temperature and stress on reliability problems of 3D ICs and

does not fully exploit the performance of 3D ICs.

As discussed above, existing 3D IC runtime reliability

management methods share the following problems:

• There is lack of explicit stress information for runtime

reliability management decision in existing methods, due

to the large computing cost in stress estimation. Without

accurate stress information, the reliability management

may lead to poor system performance or even reliability

violation.

• By using the existing runtime reliability management

methods, the 3D IC system does not have performance

boost ability when executing heavy load applications,

meaning the high performance potential of the 3D IC

system will be over pessimistically limited by existing

methods.

• The existing methods do not have advanced control

scheme to quantify the power adjustment suggestions for

reliability management actions. Without such advanced

control scheme, the system may experience large reliabil-

ity control overshoot or system performance degradation.

In this work, a new 3D IC runtime reliability management

method STREAM is proposed to solve the above problems

in existing methods. The major contributions of this work are

summarized as follows:

• To avoid the stress approximation error of existing relia-

bility management of 3D ICs, STREAM uses an artificial

neural network to perform runtime stress analysis. Thanks

to this ANN stress model, designing an accurate runtime

reliability management method with 3D IC performance

boost becomes possible.
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• To fully exploit 3D IC’s performance potential under

reliability constraint, we introduce a lifetime estimator

with lifetime banking technique to 3D IC reliability

management method, with the reliability information

estimated by the ANN stress model. Thanks to the

lifetime estimator, STREAM can temporally boost 3D

IC performance and still maintain its designed operating

lifetime.

• To further improve the control quality in 3D IC reliability

management, a specially designed model predictive con-

trol (MPC) method, called lifetime MPC, is integrated

into STREAM. With the new lifetime MPC, STREAM is

able to quantify the future power suggestion values. The

power suggestions lead to smoother and more efficient

reliability control, compared with existing 3D IC runtime

reliability management methods.

• Experimental results demonstrate that STREAM is able

to accurately estimate the stress information and boost

3D IC performance with accurate and smooth reliability

control. It outperforms the state-of-the-art 3D IC reliabil-

ity management method in both control quality and 3D

IC system performance.

III. THERMAL AND RELIABILITY MODELS

In this section, we present the thermal and reliability models

used in STREAM. The 3D IC thermal model shown in

Section III-A will be used in the lifetime MPC component

(which will be presented later in Section IV-D) of STREAM in

order to compute the suggested power. The reliability models

shown in Section III-B will be used in the lifetime estimator

component (which will be presented later in Section IV-C) of

STREAM to compute the lifetime information of the 3D IC

system.

A. Thermal model of the 3D IC

Since stress is influenced by temperature, and reliability

(lifetime consumption) is affected by both temperature and

stress, we need the 3D IC thermal model in reliability man-

agement for lifetime consumption prediction.

Due to the well-known duality between thermal system and

electrical circuit system, we can build the thermal model of the

3D IC using thermal equivalent resistors (thermal resistors),

thermal equivalent capacitors (thermal capacitors), and thermal

equivalent independent current and voltage sources. Assume

there is a 3D IC with n silicon and interface material layers

and l cores. By using finite difference method, each layer can

be divided into m grids. Then we can generate the thermal

model of the 3D IC as ordinary differential equations like

GT (t) + C
dT (t)

dt
= BcP (t),

Y (t) = LT (t),
(1)

where T (t) ∈ R
q is the thermal vector representing temper-

atures of q grids of the 3D IC, including mn grids on the n
layers, and (q−mn) grids on package components (spreader,

heat sink, etc.); G ∈ R
q×q matrix includes thermal resistance

information; C ∈ R
q×q matrix includes thermal capacitance

information; Bc ∈ R
q×l matrix contains the power injection

topology information; P (t) ∈ R
l is the power vector with

power dissipations of l cores at time t, and it is the input of

the model. Y (t) ∈ R
mn is the thermal vector with temperature

information of the l cores, and it is the output of the model;

L ∈ R
mn×q is the output selection matrix, which selects the

mn temperatures on the 3D IC layers from T (t). For the

details of generating the thermal model matrices (G, C, Bc,

and L) in (1), please refer to the thermal modeling works [33],

[34], [35], [36] and especially the 3D IC thermal modeling

works [37], [38].

In order to analyze the thermal system, the original ordinary

differential equation (1) in continuous time is discretized into

the following difference equation by using the Euler method

or other numerical integration methods as

T (k) = AT (k − 1) +BdP (k),

Y (k) = LT (k),
(2)

where the variables T (k), P (k), and Y (k) are the discretized

versions of T (t), P (t), and Y (t) in equation (1), A and Bd

are formulated using G, C, and Bc according to the specific

numerical integration method used to discretize equation (1).

For example, if we use Backward Euler (BE) method, which

ensures absolute stability, to perform the discretization with

discretization time step h, there is

A = (
C

h
+G)−1

C

h
, Bd = (

C

h
+G)−1Bc. (3)

Then, thermal model in equation (2) can be used to compute

the temperatures of 3D IC with Y (k) as the output, by feeding

in the power consumption of the power units of the chip (P (k)
as the input).

B. Reliability models

With so many advantages against traditional 2D ICs, 3D

ICs suffer from severe reliability problems, due to its high

power density and poor heat removing ability in the vertical

dimension [39], [38]. The TSV structure makes the reliability

of 3D ICs even worse: because TSV and die are manufactured

using different materials, thermal variations in both space and

time lead to stress variations around TSV, which shortens

the lifetime of 3D ICs [40]. There are two main stress-

induced reliability problems, one is thermal cycling effect

and another is stress migration effect. We will introduce the

thermal cycling effect in Section III-B1 and stress migration

effect in Section III-B2.

1) Reliability model for thermal cycling effect: Fatigue

failures can be induced by thermal cycling. With the increasing

of thermal cycle number, the permanent damage accumulates

and eventually leads to failure. Thermal cycling effect can be

modeled as [41]:

MTTFTC =
1

vTC

= A0(
1

σ − σ0

)qc , (4)

where MTTFTC is the mean time to failure due to thermal

cycles. vTC is the inverse of MTTFTC , meaning the average

lifetime consumption rate of thermal cycling effect. A0 is

an empirically determined material-dependent constant by



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XX XXXX 4

assuming the thermal cycling frequency to be constant [22],

and qc is the Coffin-Manson exponent. Since the maximum

stress always appears around TSV for 3D IC, we consider the

worst case stress by selecting the maximum stress around TSV.

In this way, σ is the runtime maximum stress and σ0 is the

maximum stress when the 3D IC is under ambient temperature.

Specifically, in STREAM, σ will be given as the output of the

ANN stress model shown later in Section IV-B.

2) Reliability model for stress migration effect: Stress

migration effect is caused by mechanical stress induced by

different thermal expansion factor between TSV and silicon.

Such mechanical stress will influence the movement of metal

atoms, leading to voids in circuits. Stress migration effect can

be modeled as [41]:

MTTFSM =
1

vSM

= B0σ
−nae

Ea
kTa , (5)

where MTTFSM is the mean time to failure due to stress

migration. vSM is the average lifetime consumption rate

of stress migration. B0, Ea and na are material-dependent

constants, k is Boltzmann constant. For stress migration effect

of 3D IC, we use the runtime maximum stress σ around

TSV and average temperature Ta of the chip following the

RAMP model [22]. In STREAM, σ will be given by the ANN

stress model, and Ta is obtained from the on-chip temperature

sensors.

For the two reliability models above, we use explicit ex-

pression of stress instead of the temperature difference used in

RAMP model, thanks to the ANN stress model in STREAM.

This improves the fidelity of the reliability model and the

management method.

3) The unified reliability model: In order to unify the

MTTFs introduced above, we use the industry standard sum-

of-failure-rates (SOFR) model [22] to get the unified MTTF

as:

MTTFIC =
1

vIC
=

1

vSM + vTC

, (6)

where vIC is the average lifetime consumption rate of IC

considering all failure effects.

SOFR model is a very good industrial standard practical

model which balances the accuracy and computing overhead

for runtime reliability management [42]. It is based on two

assumptions. The first assumption is that the IC is a series

failure system. This means any failure mechanism will make

the entire system fail. The second assumption is that each

failure rate is constant. This means every failure mechanism

has an exponential lifetime distribution.

Please note that although both stress migration and thermal

cycling depend on temperature and stress, system failure

events caused by these two failure mechanisms are still

assumed to be independent in the SOFR MTTF computing

process. This is because temperature and stress are viewed as

constant parameters in MTTF, representing the specific con-

dition that MTTF is computed. Let us denote the probability

of system failure by stress migration as P (XSM ) and that by

thermal cycling as P (XTC). Then, in a specific temperature-

stress condition, the event of system failure by stress migration

does not change the probability of system failure by thermal

cycling, i.e., P (XTC |XSM ) = P (XTC), indicating the two

failures are independent.

It is also noted that there are other failure mechanisms

besides stress migration and thermal cycling in 3D ICs, such as

EM, NBTI, TDDB, etc. In order to adapt them into STREAM,

generally, we can compute the system MTTF individually

for each failure mechanism using existing methods. Then,

the MTTFs of all failure mechanisms can be unified using

the industrial standard SOFR model in the same way as we

unify the two stress-aware failure mechanisms in (6). For more

discussions on this topic, please refer to the Ph.D. thesis by J.

Srinivasan [22], who proposed RAMP [42], [22] to specially

deal with this problem.

IV. NEW STRESS AND THERMAL AWARE RELIABILITY

MANAGEMENT METHOD FOR 3D ICS

In this section, a new 3D IC stress and thermal aware

reliability management method STREAM is presented. In

Section IV-A, we will first show the basic flow of STREAM

and briefly discuss the functions of the major components

in STREAM including lifetime estimator and lifetime MPC.

Then, we present the important techniques and major compo-

nents of STREAM in details. Specifically, in section IV-B, we

introduce the ANN based stress model for 3D ICs, which is an

important component of the lifetime estimator. Then, we show

the new lifetime estimator with lifetime banking technique in

section IV-C. Next, the new lifetime MPC is presented in

section IV-D. Finally, Section IV-E summarizes the flow of

STREAM.

A. Basic flow of STREAM

The goal of STREAM is to compute the future power sug-

gestion for the 3D IC plant, which optimizes the performance

of the 3D IC system without violating the designed lifetime

of the chip.

To achieve such goal, it is vital to estimate the lifetime infor-

mation of the system by providing the stress and temperature

state of the system. Although temperature state can be obtained

easily, it is difficult to obtain the stress information at runtime

to estimate system lifetime for reliability management. As a

result, we first propose a new ANN based stress model which

estimates the maximum stress around each TSV by taking

temperature as input.

The lifetime of the system can be estimated with the stress

information obtained by the ANN stress model. But since

existing methods only consider current lifetime information

which pessimistically limits the performance of the 3D IC

system, we further propose the new lifetime estimator with

lifetime banking technique. With the new lifetime estimator,

the 3D IC system will deposit lifetime when the system has

light task loads, and will consume the lifetime deposit to boost

performance with heavy task loads.

Finally, we need to determine the reliability management

actions which fully utilizes the lifetime deposit provided by

the lifetime estimator to boost system performance. Traditional

methods use primitive control schemes to guide the manage-

ment actions which do not ensure the control optimality. In
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Fig. 3: Stress and thermal aware reliability management flow.

The detailed structures of the lifetime estimator and lifetime

MPC are given further in Fig. 8 and Fig. 9, respectively.

STREAM, we propose to use the lifetime MPC to quantitively

compute the proper future power suggestions. Since lifetime

MPC uses model predictive control which not only considers

3D IC system’s current state but also its future state, it leads to

high system performance by fully utilizing the lifetime deposit.

The basic flow of STREAM is given in Fig. 3. The ma-

jor components of STREAM include an ANN based stress

model, a lifetime estimator with lifetime banking technique,

and a lifetime model predictive control. Integrated with the

ANN based stress model, the lifetime estimator takes the 3D

IC temperature information to quantify the accurate lifetime

information using lifetime banking technique. Then, based on

such lifetime information and 3D IC temperature information,

lifetime MPC is used to compute the power suggestion for

the future management cycle, which concludes the reliability

management loop.

B. ANN based stress model for 3D ICs

1) The motivation of using ANN based stress model:

The main problem of using the reliability models presented

in Section III-B is how to get the accurate stress information

σ. Conventionally, stress information can be estimated by finite

element methods (FEM) [19], [20]. But FEM methods cannot

be used for runtime thermal management due to its large

computing cost. Previous works [21], [43] use temperature

difference to approximate complicate σ, which can introduce

large error. In this work, we use an artificial neural network

(ANN) [44] to perform the fast and accurate stress analysis

for reliability management.

A widely used TSV structure with full copper filling and a

silicon dioxide liner between copper and silicon is shown in

Fig. 2. As a necessary structure in 3D IC, TSVs, however, lead

to thermal induced stress problem, which harms the reliability

of the chip. There are two major reasons for the problem.

First, TSV has a much higher thermal conductivity than silicon

wafers. As a result, large temperature gradient may appear in

the area close to TSV, which usually leads to large thermal

stress. Second, mismatch in coefficient of thermal expansion

(CTE) also brings significant stress increase. Specifically,

copper’s CTE (17× 10−6 K−1) is seven times larger than the

CTE of silicon (2.56×10−6 K−1). When temperature increases

with the same degree, copper expansion will be much more

significant than silicon, resulting in considerable stress.

One example of temperature and stress distributions of a 3D

IC simulated using the FEM tool COMSOL is given in Fig. 4.

The experimental settings follow the work in [18]. Please note

that in Fig. 4c, the whole range of stress is actually from

112MPa to 834MPa, but we choose to display only the range

from 130MPa to 150MPa to make the stress distribution

more viewable. We can see that the stress distribution in 3D IC

is largely influenced by both TSV distribution and temperature

distribution. As a result, we build an ANN stress model to

capture such complex effects at runtime.

2) Structure and training of the ANN stress model: In

machine learning and cognitive science, ANNs are a family

of statistical learning models inspired by biological neural

networks to estimate or approximate functions that depend on

a large number of inputs. ANNs are generally presented as

systems of interconnected “neurons”, which connect and send

messages to each other.

The basic structure of the ANN stress model used in this

work is shown in Fig. 5. The input of this model is the

temperature distribution around a TSV in 3D IC, denoted as

{T1, T2, . . . , Tng
}, where ng is the grid number around each

TSV. The maximum stress around a TSV is chosen as the

output stress information σ to save the computing cost of the

ANN model, because it is the most important one for reliability

management. Please note that other output other than the

maximum stress or more outputs can also be implemented

if necessary. Each circle in the figure is a neuron. For neurons

in our model, they have the same function structure as

out =

ni
∑

i=1

Iiwi, (7)

where the terms Ii (Ti for the neuron in the input layer) and

wi, i = 1, 2, . . . , ni are inputs and weights of the neuron, out
is the output of the neuron (σ for the neuron in the output

layer). The values of the weights wi need to be determined in

the training process to make the ANN work as desired, which

will be shown later. There are one input layer, one output layer,

and usually one or several hidden layers in this ANN stress

model. With one or more hidden layers, the network is able

to model higher-order statistical properties.

Before being applied in STREAM, the ANN stress model

needs to be trained using temperature input and stress output

data (called training samples) specially generated for training

purpose. The goal of training is to find the optimal weights

(wi in (7)) in the ANN model, which leads to good output

accuracy. In this work, we use BackPropagation (BP) method

to train our ANN stress model, as it is a common method

of training ANNs used in conjunction with an optimization

method such as gradient descent. BP method calculates the

gradient of a loss function with respect to all the weights in

the network. The gradient is fed to the optimization method,

which in turn uses it to update the weights, in an attempt to

minimize the loss function. More specifically, before training,

the weights of the ANN model will be set randomly. They

will be updated by learning from the training samples. Each

sample, taken from the system to be modeled, is an input-

output set {T1, T2, . . . , Tng
, σs}, where {T1, T2, . . . , Tng

} are

the inputs and σs is the corresponding output of the system to
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(a) Die structure of a 32-core (16 cores on each
layer) 3D IC microprocessor with two die layers
and 144 TSVs. Package structure is not shown
in the figure.

(b) Temperature (K) distribution of the bottom
surface of the 3D IC.

(c) Thermal induced Von Mises stress (MPa)
distribution of the bottom surface of the 3D
IC. Stress display range is manually constrained
from 130MPa to 150MPa for better demon-
stration.

Fig. 4: One example of temperature and stress distributions of a 3D IC simulated in COMSOL.

be modeled. Since the ANN is not exactly the same as the sys-

tem to be modeled, given the sample inputs {T1, T2, . . . , Tng
}

to the ANN will generate an output σa which differs from σs

(especially when the weights are initially random). During the

training process, the weights will be tuned by optimization to

make σa close to σs. Considering the large scale of samples

and the resilient backpropagation’s (RPROP) advantage in

nonlinear mapping, processing efficiency, and fewer resources

occupying [45], we select RPROP as the training algorithm.

For a comprehensive introduction of ANN training process,

please refer to the book [46].

Please note that the trained ANN model can only work on

the specific 3D IC it is trained on. If the ANN model trained

for one 3D IC design is applied to another 3D IC with more

layers or with different TSV distributions, it may show large

error. Although it is possible to train a universal ANN model

which works for many different 3D ICs using samples from

all different 3D ICs, training such universal ANN model is not

recommended as explained here. First, this ANN model should

be large in size, in order to contain all information learned

from different cases to ensure universal accuracy. This large

ANN model leads to large stress estimation computing over-

head, which is unacceptable for runtime algorithm. Second,

training specific ANN model for each 3D IC design is easier

than training the universal ANN model, since only sampling

data for this specific 3D IC design is required. It also leads to

more accurate and compact ANN model because it only needs

to consider this specific 3D IC design.

3) The advantage of using the ANN stress model: This

ANN stress model is able to estimate important stress infor-

mation at extremely fast speed with good accuracy, which

will be shown in the experiments. As a result, it is able

to provide explicit stress information to greatly improve the

management quality and enable the lifetime banking technique

of STREAM. To see this more clearly, we make a simple

comparison here with the traditional methods without such

explicit stress information. As discussed before, traditional

methods use temperature difference as the stress approxima-

tion to avoid the high overhead of explicit stress computation.

Fig. 5: The ANN stress model used in STREAM with one

hidden layer.

In Fig. 6, we plot the MTTF results of using the explicit

stress as in STREAM and using the stress approximation

as in existing methods [22]. The MTTF results are com-

puted considering both thermal cycling and stress migration

effects (as introduced in section III-B) using Monte Carlo

method [22] to ensure accuracy. From the figure, we can see

that the computed MTTF by using the stress approximation

is inconsistently larger than that of using the explicit stress

information. This means the reliability estimation may be over-

optimistic without explicit stress information. Due to such

over-optimism, the runtime reliability management method

may falsely compute a “proper” power budget, which is

excessive in reality, to put the chip in danger state.

C. New lifetime estimator with lifetime banking technique

Setting a temperature threshold in thermal/reliability man-

agement is pessimistic and leads to poor system performance.

Actually, when the IC chip is operating at low temperature

state, its aging is reduced and its lifetime is increased. By

utilizing such lifetime increasing, system performance can be

boosted for a period of time without shortening the designed

lifetime, because the reduced lifetime by violating the temper-

ature threshold can be compensated by the increased lifetime

in low temperature. Based on this idea, lifetime banking
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Fig. 7: Mechanism of lifetime banking technology.

technique has been proposed to boost system performance

by quantifying and balancing the lifetime saving (also called

lifetime deposit) and lifetime reduction [28].

However, using lifetime banking technique for runtime

reliability management of 3D ICs is challenging, because it is

difficult to quantify the lifetime of 3D IC with TSV induced

stress at runtime. Thanks to the accurate stress information

provided by the ANN stress model presented previously, we

are able to compute the lifetime information by feeding both

explicit thermal and stress information to the MTTF equations

shown in Section III-B. Now we present the basic theory and

structure of the new lifetime estimator with lifetime banking

technique.

IC chip has an expected lifetime under a particular oper-

ating condition (with a certain temperature distribution, stress

distribution, etc.). For example, a 3D IC may have an MTTF

of 10 years at 90 ◦C uniform temperature distribution and the

corresponding stress distribution. In order to perform lifetime

banking, we use lifetime consumption rate expression other

than MTTF, to compute lifetime deposit or consumption. Such

average lifetime consumption rate v is simply the inverse of

MTTF as

v =
1

MTTF
. (8)

So, for the same example given previously, we can also say this

3D IC has an average lifetime consumption rate v = 1/10 at

90 ◦C uniform temperature distribution and the corresponding

stress distribution.

Similarly, we can also transform the designed 3D IC life-

time, denoted as MTTFth, into the designed 3D IC lifetime

consumption rate, denoted as vth. For example, if the 3D IC

is designed to have an MTTFth of 15 years, then vth = 1/15.

According to the reliability banking theory, if the realtime

3D IC lifetime consumption rate is lower than the designed

one vth, the true lifetime of the 3D IC is increased, and vice

versa. This property is important for reliability management:

performance boost which shortens the designed lifetime will

be allowed if the lifetime was previously increased. The

goal of our new lifetime estimator is to calculate how much

lifetime has been previously increased, so that the reliability

management algorithm can quantify the suitable future power

budget for the performance boost.

In our lifetime estimator during the runtime reliability man-

agement, we can first calculate the real lifetime consumption

rate v(t) at each management step, using both the temperature

and stress information. Then, in order to know how much

lifetime has been increased (or reduced) because of this v(t),
the LifeTime DePosit (LTDP) is defined using v(t) and vth
as [28]

LTDP =

∫

[vth − v(t)] dt. (9)

When the 3D IC is running at a safe state (low temperature,

small stress, etc.), v(t) will be less than vth, and lifetime

deposit LTDP will increase. This mechanism is illustrated

in Fig. 7. The shaded area filled with slash (from 0 s to

2 s) represents the positive temporal lifetime deposit when

the 3D IC is running at a safe state. Such positive lifetime

deposit can be used to boost system performance in the

future. On the other hand, when v(t) is larger than vth, the

lifetime deposit LTDP will decrease, because the temporal

lifetime deposit will become negative, which is shown as the

shaded area with backslash (from 2 s to 5 s). In traditional

3D IC reliability management, such negative temporal lifetime

deposit is not allowed because a strict temperature threshold

is set. But in STREAM, such temperature and stress violation

will be allowed as long as the total deposit lifetime is positive

(LTDP > 0) to boost system performance. However, when

the total lifetime deposit LTDP is consumed to be zero which

means the lifetime deposit balance point is reached (i.e., the

slash shaded area equals the backslash shaded area, at 5 s in

the figure), the reliability management method will constrain

system performance to make sure the total LTDP will not

become negative. We remark that the lifetime estimator is

only responsible for computing the lifetime information LTDP,

and the detailed management step will be shown next in

Section IV-D.

Fig. 8 concludes the flow of the lifetime estimator. First,

the ANN stress model (denoted as “ANN” in the figure) is

used to compute the stress information of the 3D IC using

temperature information. Then, we feed both the temperature

and stress information to the reliability models (denoted as

“Reliability Models” in the figure) to compute the average

lifetime consumption rate v(t) of the 3D IC under current

temperature and stress state. Finally, the lifetime deposit

LTDP is computed by the “Lifetime Banking” component,

and outputted to the Lifetime MPC.
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Fig. 8: The flow of the novel lifetime estimator.

D. New lifetime model predictive control for 3D IC reliability

management

Now we have the lifetime deposit LTDP provided by

the lifetime estimator, we still have to quantify the power

suggestions of the 3D IC system, to enable the performance

boost ability by properly consuming the lifetime deposit. In

STREAM, we propose a specially designed model predictive

control (MPC) method, called lifetime MPC, to achieve such

purpose, as shown in Fig. 3.

MPC is a widely used advanced control scheme which

considers not only the current but also the future. Standard

MPC has been applied to the dynamic thermal management

problem for 2D ICs because of its smooth and accurate

temperature control ability [47], [48], [49]. However, applying

MPC directly in the 3D IC reliability problem is difficult due

to the complex and nonlinear relationship between the control

target (lifetime) and plant input (power of 3D IC). In this

work, lifetime MPC is introduced to perform 3D IC reliability

management.

In this part, Section IV-D1 introduces the target temperature

estimator which transforms the lifetime information into the

target temperature to enable the model based control. Then,

we present the lifetime MPC which computes the power sug-

gestions for reliability management with performance boost

ability in Section IV-D2.

1) Target temperature estimator for lifetime control: As

discussed above, model based control schemes like MPC have

been directly applied to control the temperature of 2D IC sys-

tems [47], [48], [49]. This is because the relationship between

temperature and power is linked by a linear thermal model

as shown in (1) or (2). With a target temperature distribution

and current temperature status of the system provided, MPC

is able to compute the future power distribution which leads

to such target temperature in the future. However, if we want

to boost the performance of the 3D IC system with lifetime

banking strategy, we need to control the lifetime instead of the

temperature. In other words, we want to compute the future

power distribution, which leads to a given lifetime target.

Unfortunately, this is very difficult because the relationship

between lifetime and temperature is highly nonlinear, espe-

cially with the existence of the TSV structure in 3D IC.

In order to enable MPC in lifetime control, we need to trans-

form the lifetime information into temperature information.

To be specific, with the lifetime deposit (LTDP) information

provided at current time by the lifetime estimator, we want to

know the corresponding future temperature distribution of the

3D IC that consumes such LTDP. Then, we can use such future

temperature distribution as the target temperature in MPC to

Fig. 9: The flow of lifetime MPC for 3D ICs’ reliability

management.

compute the future power distribution. We developed the target

temperature estimator to accomplish such goal.

The task of the target temperature estimator is to transform

LTDP into the target temperature distribution. Although the

target temperature estimator can be formed in many ways,

we build it as a lookup table for simplicity in this work. In

order to build such a lookup table, the following experiments

are performed offline. First, we feed different temperature

distributions (the i-th distribution is denoted as Yi) into the

ANN stress model to compute the stress information for these

temperature distributions. Next, we compute the average life-

time consuming rate (vi for the i-th temperature distribution

Yi) for these different temperature distributions with both

temperature and stress information. Then, we need to compute

the LTDP consumptions for different temperature distributions.

For each reliability management time interval with the length

∆t, we want to consume all the LTDP stored to maximize

system performance. According to the LTDP definition in (9),

we have the following equation

LTDPi = (vth − vi)∆t, (10)

where LTDPi is the LTDP consumed (with negative sign)

by the i-th temperature distribution Yi in time period ∆t.
Finally, we store the target temperature distributions (Yi for

the i-th target temperature distributions) and the corresponding

LTDP consumptions (LTDPi for the i-th target temperature

distributions) into the target temperature estimator lookup

table.

The function of the target temperature estimator during the

reliability management process is shown in Fig. 9. It receives

lifetime information LTDP as the input. Then, it will search

for LTDP consumption with the nearest absolute value stored

in the lookup table (assume it is LTDPj), and then output the

corresponding target temperature distribution (Yj) to the MPC.

The target temperature distribution serves as the maximum

allowed temperature distribution for 3D IC without LTDP

overdraft for the future reliability management time interval.

2) Lifetime model predictive control: In the previous part,

we have introduced the target temperature estimator which is

able to transform the lifetime deposit into target temperature

distribution. In this part, we demonstrate the lifetime model

predictive control method which computes the future-aware

power distribution suggestion for the 3D IC to achieve the

target temperature distribution. Then, the computed power

distribution suggestion will serve as the maximum allowed

power distribution for the reliability management with dy-
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namic voltage and frequency scaling (DVFS) management

actions.

By using the thermal model in the form of (2), the goal

of MPC is to compute the power suggestion P (k) for the

future reliability management interval in order to track the

maximum allowed temperature distribution estimated by the

target temperature estimator. Now, we briefly introduce the

process of MPC. More detailed presentations of MPC can be

found in [50], [49].

First, we define the target temperature distributions over

several time steps into the future in a vector form as

Ytg = [Y T
j , Y T

th , ..., Y
T
th ]

T ∈ R
mnNp×1.

In this vector, Y T
j ∈ R

mn×1 is the target temperature distri-

bution given by the target temperature estimator (assume the

j-th temperature distribution in the lookup table is picked),

and Y T
th ∈ R

mn×1 is the threshold temperature distribution

which just consumes zero LTDP. Np stands for a time frame

from current to the Np steps into the future, and is called the

prediction horizon.

In order to keep the core temperatures tracking the temper-

ature goal in the prediction horizon, at a time k, the future

control trajectory (which is actually unknown and needs to be

computed in the end) is introduced as

∆Pk = [∆P (k),∆P (k + 1), . . . ,∆P (k +Nc − 1)]T ,

where ∆P (k) = P (k)−P (k−1) and Nc is called the control

horizon.

The prediction of core temperatures is defined as

Yk = [Y (k + 1|k)T , Y (k + 2|k)T , . . . , Y (k +Np|k)
T ]T ,

where Y (k + j|k) is the predicted core temperatures at time

(k + j) using information of current time k.

Yk can be calculated by assuming ∆Pk is known, using

Yk = V T̂ (k) + Φ∆Pk, (11)

where T̂ (k) =
[

∆T (k)T , Y (k)T
]T

with ∆T (k) = T (k) −
T (k − 1), V and Φ are known matrices formed by thermal

model matrices in (2), and their detailed structures are not

given here due to page limitation.

Next, we would like to calculate the power, which mini-

mizes the difference between temperatures Yk generated by

such power and the provided target temperatures Ytg . We can

first introduce the measurement of such difference as

F = (Ytg − Yk)
T (Ytg − Yk), (12)

and the optimal power distribution is the one leading to F = 0
(or Yk = Ytg).

As a result, optimization is performed to minimize equa-

tion (12) by taking the first derivative of equation (12) with

respect to ∆Pk and making it equal to zero. The solution of

∆Pk is

∆Pk = (ΦTΦ)−1ΦT (Ytg − V T̂ (k)). (13)

At each MPC time k, we only use the first computed control

signal ∆P (k) from ∆Pk and update the power distribution as

P̄ (k)← P (k) + ∆P (k), (14)

where P̄ (k) is the final computed power distribution. If such

computed power is actually consumed, the resulting tempera-

ture distribution of 3D IC would track the target temperature

distribution given by the target temperature estimator. In other

words, the computed power distribution is the maximum power

distribution allowed which just consumes all the lifetime

deposit LTDP. Please note that with such maximum power

distribution, temperature is allowed to exceed the threshold

temperature Yth, which enables performance boost of 3D IC.

Next, thermal management method can be performed with

the maximum power distribution (power suggestion) provided

by MPC in equation (14). DVFS can be integrated with MPC

easily by adjusting the frequency and voltage level of each

core to ensure the maximum power distribution will not be

exceeded.

Fig. 9 concludes the flow of lifetime MPC for reliability

management of 3D ICs. First, the target temperature estimator

takes the LTDP provided by lifetime estimator as input, and

outputs the target temperature distribution. Then, MPC takes

the target temperature distribution and current temperature

distribution of 3D IC as input, and outputs the maximum

power distribution as power suggestion. Finally, 3D IC will

adjust its power distribution using method like DVFS to

meet the suggested power requirement, which concludes the

reliability management cycle.

E. Full workflow of STREAM

We have shown the key components of STREAM in

previous sections, now the full workflow of STREAM is

summarized in Algorithm 1.

Algorithm 1 STREAM: Stress and Thermal Aware Reliability

Management for 3D ICs

1: Get temperature information of 3D IC.

2: Compute stress information using ANN stress model with

temperature information as input.

3: Compute MTTF with stress and temperature information

as input.

4: Compute lifetime information LTDP with MTTF as input.

5: Compute target temperature distribution using target tem-

perature estimator with LTDP as input.

6: Compute power suggestion for the next management cy-

cle using MPC with target temperature distribution and

current temperature information as input.

7: Perform standard thermal management techniques such as

DVFS with power suggestion as a reference.

8: Go to step 1 for the next management cycle.

V. EXPERIMENTAL RESULTS

The experiments are performed on a laptop PC with 6GB
memory and Core i5-3210M CPU clocked at 2.0GHz. The

new reliability management is implemented in MATLAB

R2016b, based on 3D IC microprocessor shown in Fig. 4a with

32 identical Alpha 21264 cores and 144 TSVs. The dimension

of this 3D IC chip is 10mm × 10mm × 0.3mm, and the

chip consists of two identical layers with TSVs uniformly
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Fig. 10: Accuracy verification results of the ANN stress model for common 3D IC running conditions. “SPEC” denotes the

SPEC benchmark free run case. “Synthetic” denotes synthetic workload case. “Target” represents the stress condition around

the lifetime MPC target. “Light” means the 3D IC has very light task loads.

distributed across the layer. The TSV in the experiment has a

structure shown in Fig. 2. The radiuses in the TSV structure

are set as ri = 20 µm and ro = 24 µm, where ri and ro are

shown in Fig. 2. The ambient temperature is set as 20 ◦C.

HotSpot [51] with 3D extension [37] is used to extract the G,

C, and Bc matrices of 3D IC thermal model in (1). COMSOL

5.0 is used to obtain the golden stress data. We use the

architectural level power estimator Wattch [52] to generate the

power traces by running SPEC CPU2006 benchmarks [53] on

the Alpha 21264 core. As a work focusing on reliability, we

assume there is no task processing related communication and

synchronization among cores in the 3D IC microprocessors,

i.e., we assume one task is assigned to one core. In addition,

we assume there is no memory bandwidth related problems in

the multi-core system due to the limitation of the experiment

platform. We remark that further system performance opti-

mization can be studied as the future work with more realistic

architectural platform settings. We set 19 voltage/frequency

levels (from 0.5V@200MHz to 1.5V@2GHz) for DVFS in this

experiment. The penalty to change the DVFS level is 10 µs,
during which the pipeline is stalled, by following the settings

in [28].

In order to demonstrate the improvements against existing

work, we compare STREAM with the state-of-the-art 3D IC

reliability management method [21], because it is the most ad-

vanced 3D IC reliability management method to date. It shares

the same experimental settings as STREAM. For simplicity,

we will call [21] as existing method in the experiment.

First of all, the accuracy of the fast explicit stress estimation

will be verified in Section V-A. Next, we will show the

improvements of using MPC in 3D IC reliability management

in Section V-B. Then, the benefits of introducing lifetime

estimator with lifetime banking technique are demonstrated

in Section V-C. Last, the overall reliability and performance

comparison against the state-of-the-art 3D IC reliability man-

agement method will be given in Section V-D.

A. Validation of the ANN stress model

First, we perform simulations using COMSOL with differ-

ent power distributions covering a large variety of the 3D

IC operating conditions. In this step, we choose the stress-

free temperature as 275 ◦C, which is the TSV’s annealing

temperature [18]. The ANN model has two hidden layers with

30 and 10 neurons in each layer, respectively. First, we use

2580 COMSOL simulation samples to train the ANN models.

Then, we use other 588 samples for validation. Since ANN

model and COMSOL model have different temperature grids,

we use interpolation to solve this problem. In order to get

the temperature information around TSVs, there are totally 32

thermal sensors on chip, uniformly placed with one thermal

sensor on each core. Then, temperature values around TSVs

are obtained using interpolation with negligible computing

overhead [54]. If there are extremely few on-chip thermal

sensors, a more advanced temperature distribution recovery

method is recommended, which can be found in runtime full-

chip thermal estimation works like [55].

In order to test the ANN model accuracy for different com-

mon 3D IC running conditions, we show the ANN model ac-

curacies separately for different test cases including “SPEC”,

“User”, “Target”, and “Light”. Each case is explained as

follows. “SPEC” denotes the SPEC benchmark free run case,

covering the SPEC benchmark’s running conditions. “User”

denotes synthetic workload running case (like the one shown

in Fig. 14a), which is used to emulate the real world user-

controlled application running condition. “Target” represents

the stress condition around the lifetime MPC target. “Light”

means the 3D IC has very light task loads and STREAM will

deposit lifetime in this condition.

The average errors of different test cases are 0.1% for

“SPEC”, 0.08% for “Synthetic”, 0.06% for “Target” and

0.09% for “Light”. These results reveal that the ANN stress

model is accurate for different common 3D IC running con-

ditions.

We also tested the overhead of the ANN stress model in

the verification process. Since each core can compute its stress

independently, the average computing time of the ANN stress

model (including interpolation process, which is negligible) is

only 0.25ms (only around 0.025% throughput degradation).

B. Advantages of using lifetime MPC

In this part, we demonstrate the benefit of using the lifetime

MPC in STREAM.

We compare STREAM with lifetime MPC with the existing

method. Since the existing method does not compute a power
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Fig. 11: Transient maximum temperatures using STREAM

(with zero lifetime deposit) and the existing method [21].

All reliability management methods start at 1 s with the

management period of 1 s.

suggestion for management reference, it relies on DVFS scale

factors. The maximum frequency of 3D IC is set to 2.0GHz,

with the basic frequency scaling step set as 0.1GHz in DVFS.

Scale factor (ζ) is introduced to determine the DVFS level in

the existing method. For example, when the core is running at

2.0GHz and the temperature is higher than threshold, DVFS

needs to level down the frequency by ζ×0.1GHz. Please note

that STREAM does not need scale factor since it can quantify

the power suggestion using lifetime MPC to determine the

proper DVFS level. In this experiment, we test DVFS scale

factor ζ = 1, 2, 3 to include both low and high scale factors.

Fig. 11 shows the transient maximum temperatures us-

ing STREAM (with zero lifetime deposit) and the existing

method [21]. We start at a high temperature (around 106 ◦C)

to exclude the lifetime banking effect in STREAM for a

fair comparison. Then, starting from 1 s, all the reliability

management methods begin to perform management using

DVFS every 1 s to track the target temperature (the maximum

allowed temperature), which is set as 90 ◦C.

From Fig. 11, we observe that the existing method is

unable to track the target temperature with both high scale

factor and low scale factor. With high scale factor (ζ = 3),

temperature of the existing method will oscillate around the

target temperature, with large control overshoot. On the other

hand, with low scale factor (ζ = 1 and ζ = 2), temperature of

the existing method converges very slowly, using five control

periods (5 s) when ζ = 1 and two control periods (2 s) when

ζ = 2 to reach the target temperature. This is because the

existing method does not know how much power should be

adjusted for the future step, using high scale factor may over

adjust power and using low scale factor may under adjust

power.

With MPC, STREAM is able to quantify the power sug-

gestion in the future and choose the correct DVFS scale ratio

based on the power suggestion as shown in Section IV-D. As

a result, temperature using STREAM quickly converges to the

target temperature in just one control period, and stays just at

the target temperature with very small overshoot.

On the overhead side, MPC in this experiment employs

a moderate sized 3D IC thermal model with dimensions

as G ∈ R
92×92, C ∈ R

92×92, Bc ∈ R
92×32 to balance

the computing overhead and reliability management accuracy.
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Fig. 12: Performance boost from reliability banking with

different workload percentage.

Such thermal model has an average thermal estimation error

to be 0.24 ◦C, which is accurate enough for power suggestion

computation in MPC. For each management period (1 s), the

computing overhead from MPC is tested as 0.092ms on a

2GHz core, which is negligible for a 32-core 3D IC (only

around 0.00032% throughput degradation).

C. Advantages of using lifetime estimator with lifetime bank-

ing

In this part, we demonstrate the advantages of using lifetime

estimator with lifetime banking.

Same as the previous experiment, we compare STREAM

with the existing method [21] which does not have lifetime

banking ability. The management period is set as 0.1 s for

all methods. Since system performance will be tested, the

management overhead is accounted for all methods. Specif-

ically, STREAM has 0.092ms MPC overhead for single core

and 0.25ms ANN stress computation overhead for all cores.

The overheads of lifetime computation and target temperature

estimation in STREAM are too small to be counted.

We use cool phase to denote the state that 3D IC chip is

running at low temperature (with light task load) and hot phase

to denote the state that the chip is running at high temperature

(with heavy task load). We also use temperature difference

to denote the maximum temperature difference between hot

phase and cool phase. In this experiment, we let the 3D IC

start at the cool phase cycle and then switch it to the hot

phase cycle, and record the MIPS results of using STREAM

and the existing method. We performed several experiments

with different cool phase percentage and different temperature

differences (we fix the hot phase temperature at 120 ◦C and

adjust cool phase temperature to get different temperature

differences).

Fig. 12 shows the hot phase performance boost of STREAM

against the existing method, for different cool phase percent-

ages and temperature differences. We can see that STREAM is

able to gain performance boost up to 9% when the temperature

difference and cool phase percentage are both large. This is

expected since lifetime deposit (LTDP) will increase during the

cool phase according to equation (9). Then, longer cool phase

time and lower cool phase temperature mean more LTDP

can be accumulated for the higher performance boost strength

during hot phase.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XX XXXX 12

bzip2

hmmer
lbm mcf

milc
sjeng

gobmk

bwaves

zeusmp

sphinx3
0

1

2

3

4

5

6

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t 
im

p
ro

v
e
m

e
n
t 
ra

ti
o
 (

%
)

Fig. 13: Average throughput improvement ratio by using

STREAM over by using the existing method [21] on 3D ICs.

From the observation above, we conclude that STREAM,

equipped with lifetime estimator, is able to improve system

performance as long as there are cool phases, which are

common in 3D IC systems.

D. Overall reliability and performance enhancement by using

STREAM

In this part, we test the overall reliability and performance

enhancement by using STREAM.

First, we let the same SPEC benchmark workload run on all

cores of 3D IC, and compute the average throughput (MIPS)

improvement ratio of STREAM over the existing method. The

average throughput improvement ratio is calculated as

ratio =
MIPSSTREAM −MIPSexisting

MIPSexisting
, (15)

where MIPSSTREAM is the average system MIPS with

STREAM, and MIPSexisting is the average MIPS with the

existing method. Since different 3D IC cores have different

running speeds with reliability management, the SPEC bench-

mark on each core will restart upon completion for a fair

throughput comparison.

Fig. 13 shows the average throughput improvement ratio by

using STREAM over by using the existing method with dif-

ferent benchmark workloads. The improvement ratio achieves

5.5% with “bwaves”. The improvement ratio with “bwaves”

is significant because this benchmark has long cool phase and

low cool phase temperature, which enable performance boost

in STREAM. On the other hand, we note that the improvement

ratio is very small (nearly zero) for bechmarks “hmmer”,

“mcf” and “sjeng”, with two different reasons. The reason for

“hmmer” is that the 3D IC cores are always at the hot phase

by running this benchmark, which completely disables lifetime

deposit in STREAM. The reason for “mcf” and “sjeng” is that

the 3D IC cores are always at cool phase by running these two

benchmarks, which means no performance boost is needed at

all. Overall, STREAM outperforms existing method in system

throughput comparison, with the performance boost ability.
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(b) Lifetime deposit information of STREAM.

Fig. 14: Max temperature of 3D IC’s synthetic workload under

different management methods.

In addition to the benchmark test above, we also created

a synthetic workload to emulate the real world application

behavior. This synthetic workload has three cool phases and

two hot phases with different temperatures. Fig. 14a shows

the transient thermal behavior of 3D IC with this synthetic

workload under different reliability management methods and

without reliability management. Without reliability manage-

ment, the temperature can reach 110 ◦C which harms the

reliability of the 3D IC system. With the existing method,

the temperature can be controlled below 90 ◦C, which is the

threshold temperature without harming the reliability. How-

ever, the threshold temperature is not violated even after the

cool phase, meaning the performance potential of the 3D IC

system is not fully exploited. In addition, there is significant

temperature oscillation around the threshold temperature, indi-

cating poor control performance with large control overshoot

with the existing method.

Now let us analyze the performance of STREAM with both

Fig. 14a and Fig. 14b. We can see that from 0 s to 100 s,
3D IC stays in cool phase and lifetime deposit increases with

time. There is no reliability management needed for STREAM

during this time period. From 100 s to 150 s, 3D IC runs

in hot phase and begins to consume lifetime banking. Since

the lifetime deposit is not fully consumed during this hot

phase, STREAM does not take any control action even if the

threshold temperature is violated. System performance with

STREAM is higher than that with the existing method for this

hot phase. After the second cool phase (from 150 s to 200 s),
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the second hot phase arrives. At the beginning of this hot phase

(from 200 s to 240 s), lifetime deposit is being consumed, and

STREAM takes no control action as designed. At around 240 s,
the lifetime deposit is fully consumed. STREAM immediately

takes control action using DVFS (with DVFS level set accord-

ing to the computed power suggestion) in order to keep zero

lifetime deposit. Since the lifetime deposit value is always

larger than 0 according to Fig. 14b, the lifetime of 3D IC is

always longer than the designed lifetime, meaning STREAM

is able to bring performance boost to 3D IC and still maintain

its designed lifetime.

VI. CONCLUSION

In this article, we have demonstrated a new stress and

thermal aware reliability management method for 3D ICs

called STREAM. Unlike the existing methods, STREAM uses

an ANN stress model to estimate the explicit stress of 3D IC at

runtime. Thanks to the ANN stress model, an accurate lifetime

estimator is proposed with lifetime banking technology to

boost the performance of 3D IC. In order to improve the

control quality of reliability management, a specially designed

lifetime MPC has been integrated into STREAM to compute

the power suggestion for management. The new method has

been tested with SPEC benchmarks and synthetic workload.

The results show that STREAM successfully manages the

reliability of 3D IC, and leads to higher chip performance than

the state-of-the-art 3D IC reliability management method.
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