
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

DBP: Distributed Power Budgeting for Many-Core

Systems in Dark Silicon
Hai Wang, Member, IEEE, Wenjun He, Qinhui Yang, Xizhu Peng, and He Tang

Abstract—Power budget is an important power constraint pro-
vided to guarantee the thermal reliability of an integrated system.
In this work, we present DBP, a DistriButed Power budgeting
method, for dark silicon many-core systems. In DBP, there are
two new techniques proposed to bring accurate and optimized
power budget in a distributed way. First, a distributed active core
locating technique is developed to find an active core distribution
that leads to a high power budget. Second, a distributed power
budget computing technique is introduced which computes the
power budget for each active core accurately. Experiments show
DBP outperforms the state-of-the-art power budgeting methods
thermal safe power (TSP) and greedy dynamic power (GDP) on
many-core dark silicon systems by providing a high and accurate
power budget with low overhead and good scalability.

Index Terms—Power budget, distributed computing, thermal
modeling, many-core system.

I. INTRODUCTION

As technology advances, the high power density of the

integrated circuit (IC) systems leads to serious thermal related

problems. Recently, the broke of the Dennard scaling makes

the problems even worse and finally results in the dark silicon

phenomenon in today’s multi/many-core systems, where only

part of the system components are powered on at the same

time to avoid thermal violation [1], [2].

In order to guarantee thermal safety, power budget, which

is the highest power allowed to be consumed under the tem-

perature constraint, is used as the power constraint for the IC

systems. For the dark silicon systems, since there are different

active core numbers and distributions at runtime, the power

budget provided by the traditional power budgeting method

like thermal design power (TDP) can be overly pessimistic [3].

To mitigate the shortcomings of TDP in dark silicon systems,

thermal safe power (TSP) [3] was proposed which provides

a higher power budget than TDP by considering the active

core number. Recently, greedy dynamic power (GDP) [4] was

proposed by further considering the active core distribution

and transient thermal effects. Based on the dark silicon power

budgeting methods mentioned above, many thermal/power

management techniques were introduced for the multi-core

dark silicon systems [5], [6], [7].

However, power budgeting for the dark silicon many-core

systems remains an open problem. Existing methods such as

This research is supported by National Natural Science Foundation of China
under Grant 61974018 and Grant 61801087.

H. Wang, W. He, Q. Yang, X. Peng, and H. Tang are with School
of Electronic Science and Engineering, University of Electronic Science
and Technology of China, Chengdu, 610054 China. H. Wang is also with
Yangtze Delta Region Institute (Huzhou), University of Electronic Science
and Technology of China, Huzhou, 313000 China.

TSP and GDP have limitations when applied to the many-

core systems. To be specific, TSP does not have the ability

to optimize the active core distribution and consider transient

effects accurately, which leads to a conservative power budget

and suppressed performance of the many-core systems. GDP,

although does not have the previous problems of TSP, has

a computational cost related to the system core number as

a centralized method. Thus, it has a large power budget

computing delay if applied to the system with massive cores.

In this brief, we present DistriButed Power (DBP) budgeting

method for many-core systems in dark silicon. With a new

distributed active core locating algorithm and a new local

power budget computing technique, DBP is able to find a good

active core distribution and provide an accurate power budget

considering transient thermal effects, with O(1) computational

complexity locally for each active core.

II. THE DISTRIBUTED POWER BUDGETING METHOD

The flow of DBP has two stages. In the first stage, each

active core is located in a distributed way which leads to

a high power budget, as presented in Section II-A. In the

second stage, we compute the power budget for each located

active core in a distributed way based on a local thermal

model, as presented in Section II-B. Finally, we analyze the

computational complexity of DBP in Section II-C.

A. Distributed active core locating

Locating active cores is important in power budgeting of

dark silicon systems because a better active core distribution

leads to a higher power budget. In the existing power budget-

ing method GDP [4], a sub-optimal active core distribution

is found by solving a power budget maximizing problem

approximately. Such a centralized active core locating algo-

rithm has a computational complexity that depends on the

core number, making it inapplicable to the systems with an

extremely large number of cores. To solve this problem, we

propose a distributed active core locating algorithm for DBP

with a computational complexity of O(1) for each active core.

Before presenting the new algorithm, we define the adjacent

cores of the core in the ith row and jth column (denote this

location as (i, j)) as the 4 cores that locate at (i− 1, j), (i+
1, j), (i, j−1), and (i, j+1), respectively, as shown in Fig. 1.

The new algorithm is based on an important observation

from the previous studies in power budgeting of dark silicon

systems [3], [4]: a more uniform active core distribution

generally leads to a higher power budget. This observation

can be explained that the power budget of an active core will

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1: The structure of a packaged many-core system and the

local thermal model of the core at the ith row and jth column

(location (i, j)). The cores at the locations (i−1, j), (i+1, j),
(i, j − 1), and (i, j + 1) are defined as its adjacent cores.

be suppressed if its adjacent cores are also active due to the

thermal coupling effect. According to this observation, the goal

of our distributed active core locating algorithm is simplified

to distributing active cores evenly to avoid active core clusters.

To achieve this goal, the basic idea of the new algorithm is to

locate an active core randomly to an inactive location (called

candidate), with some criteria to avoid forming active core

clusters. Specifically, to locate an active core, we first pick a

candidate randomly. If this candidate’s existing adjacent active

core number (denoted as na) is no larger than a threshold nth

(indicating no active cluster will be formed if we activate this

candidate), then we will locate the active core to this candidate.

Two problems need to be solved before we can realize the

basic idea above. First, if the randomized candidate does not

satisfy na ≤ nth, how do we proceed? This problem can be

solved with the similar strategy used in the Hash table conflict

resolving: we simply test the next candidate if the current

candidate fails, until an eligible candidate is found.

Second, how do we set a proper threshold nth? Clearly,

nth depends on the existing active core number: it should be

larger if there are more existing active cores. So, for a given

existing active core number, there is a lower bound of nth,

denoted as nm: by setting nth < nm, there may not exist any

candidate that satisfies na ≤ nth. The lower bound nm can

be found as the smallest adjacent active core number of the

candidates in the most uniform active core distribution, with

an example shown in Fig. 2a. Then, setting the threshold as

nth = nm guarantees to find a candidate in all distributions,

because a candidate with na ≤ nm always exists in a less

uniform distribution, with an example shown in Fig. 2b.

However, setting nth = nm can be too strict practically,

because there may exist only very few eligible candidates,

which are difficult to find in a random-based algorithm. On

the contrary, it is also undesirable to use a large nth, because

many unwanted active core clusters may appear. As a result,

one can adjust nth within [nm, 4] to balance the active core

locating quality and computing cost.

The distributed active core locating flow is given in Fig. 3a.

B. Distributed power budget computing

With the active cores located, now we present the new power

budget computing method for each active core.

1) The local thermal model: First, we show the local ther-

mal model. Although there are some existing models (like [8],

(a) The lower bound nm = 1 appears
in the most uniform distribution.

(b) We can always find candidate with
na ≤ nm in any other distributions.

Fig. 2: Illustration of finding the lower bound of nth in a 16-

core system with 7 existing active cores. The white blocks

represent active cores. The number in each candidate (black

block) is its na.

(a) The active core locating flow. (b) The whole DBP flow with the active
core locating flow shown in Fig. 3a.

Fig. 3: The flow of the distributed power budgeting method

(DBP) for dark silicon many-core systems.

[9]), our target is to build a local model that specially works

for the dark silicon power budgeting, with small computing

overhead and without power consumption information.

For a core in a many-core system, its temperature is

determined by the temperatures of its adjacent cores, the

temperature of the package, and the power of itself.

Specifically, for the core in the ith row and jth column

of the many-core system, let us denote its temperature as

Ti,j , its power as pi,j , and its corresponding package node

temperature as T̄i,j . By using the well known duality between

thermal system and electrical circuit system, the equivalent

local thermal circuit of this core is drawn in Fig. 1, where gx,

gy , gz are the thermal conductance in the x, y, z directions,

respectively, c is the thermal capacitance of each core.

According to the local thermal circuit, we can write the

local thermal model in ordinary differential equation as

c
dT (t)

dt
= −glT (t) + pa(t) + gzT̄ (t) + p(t), (1)

where gl = 2gx+2gy+gz , and we count the thermal influence

from the adjacent cores (Ti−1,j , Ti+1,j , Ti,j−1, Ti,j+1) as a

power source pa(t):

pa(t) =gxTi,j−1(t) + gxTi,j+1(t)

+ gyTi−1,j(t) + gyTi+1,j(t),
(2)

and use T (t), T̄ (t), p(t) to represent Ti,j(t), T̄i,j(t), pi,j(t)
respectively to simplify notation.

2) Formulation of the local power budget computing: The

problem of power budgeting is to compute the maximum

power allowed to be consumed in a future time span called

the power budgeting time step (denoted as h).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

To describe the distributed power budgeting problem math-

ematically, we first discretize the original local thermal model

according to the power budgeting time step h as

(
c

h
+ gl)T (t+ h) =

c

h
T (t) + pa(t+ h)

+ gzT̄ (t+ h) + p(t+ h),
(3)

In the power budgeting problem, p is the power budget to

be solved, which should be treated as a constant during each

power budgeting step. In order to solve the power budget p,

the core temperature at the end of the step T (t + h) should

be set as the threshold temperature: T (t+ h) = Tth.

Now, we can rewrite (3) for the distributed power budgeting

problem as

(
c

h
+ gl)Tth =

c

h
T (t) + pa(t+ h) + gzT̄ (t+ h) + p. (4)

Then, p, the power budget of the local core, can be solved

from the equation above.

In equation (4), Tth is provided by the user. T (t), which

is the current temperature of the local core, can be read from

the thermal sensor. pa(t+ h), the thermal influence from the

adjacent cores, is generally unknown, but can be estimated

using the current temperature values of the adjacent cores

(Ti−1,j(t), Ti+1,j(t), Ti,j−1(t), Ti,j+1(t)). Since temperature

does not change drastically thanks to the low pass filter

property of the thermal system, these current temperatures lead

to a good approximation.

Except for p to be solved, the only unknown variable in (4)

is the temperature of the package node T̄ , because there is

usually no thermal sensor located in the package. Since the

package temperature has a significant impact on the power

budget of the core [4], we need to estimate T̄ in (4) in order

to compute the power budget accurately, as shown next.

3) Package temperature estimation: At runtime, the dark

silicon pattern (active core distribution) may change when

tasks are assigned to new active cores or when tasks are

completed in some active cores. The package temperature will

also change with the active core distribution. In this part, we

show how to estimate the package node temperature T̄ (t+h),
in order to solve equation (4) for power budget p.

Since the package temperature is influenced by the die

temperature, it will reach a steady state value if the die

temperature is steady for a period of time. We observe that

for each active core distribution, the steady state package node

temperature is mainly determined by the adjacent active core

number of this local core, the target temperature value Tth,

and the ratio of active cores to total cores. As a result, we can

estimate the steady state temperature of the package node,

denoted as T̄ss, using the following equation

T̄ss = α1na + α2Tth + α3r, (5)

where na is the adjacent active core number of the local core,

r is the ratio of active cores to total cores, α1, α2, and α3 are

parameters fitted through training.

With the steady state package temperature T̄ss available, we

can estimate the transient package node temperature T̄ (t+h).
To illustrate the idea of the package temperature estimation,

Fig. 4: Illustration of the transient curve of a local package

node temperature T̄ (t). The active core distribution switches

at time ts.

we plot the transient temperature of the package node in Fig. 4.

From the figure, T̄ (t+ h) can be represented as

T̄ (t+ h) = T̄−

ss +∆T̄ (t+ h), (6)

where T̄−

ss is the steady state package temperature with the

previous active core distribution, ∆T̄ (t+h) is the temperature

change from the previous steady state package temperature.

According to equation (6), we still need to estimate ∆T̄ (t+
h) in order to get T̄ (t + h). Fortunately, with the previous

steady state temperature (T̄−

ss) and the current steady state

temperature (T̄+
ss) available, we can estimate ∆T̄ (t + h)

according to the system thermal dynamics.

Specifically, we can write the following full thermal model

of the many-core system with the local package node temper-

ature T̄ (t) (i.e., T̄i,j(t)) as the output:

GY (t) + C
dY (t)

dt
= BP (t)

T̄ (t) = LY (t),
(7)

where Y (t) is the thermal vector of all temperature nodes;

P (t) is the power vector of all power sources; G and C are the

thermal conductance matrix and capacitance matrix, respec-

tively; B is the power mapping matrix; L is an output selection

vector which selects the local package node temperature out

of the thermal vector.

Using the full thermal model (7), we can get ∆T̄ (t+h) as

∆T̄ (t+ h)=T̄ (t+ h)− T̄ (ts)

=L(e−(t+h−ts)C
−1GY (ts)

+

∫ t+h

ts

e−(t+h−τ)C−1GC−1BPdτ−Y (ts))

=L(I−e−(t+h−ts)C
−1G)(G−1BP−Y (ts)).

(8)

Please note that because T̄+
ss = LG−1BP and T̄−

ss = LY (ts),
∆T̄ (t+ h) can be approximated as

∆T̄ (t+ h) ≈ (1− e−β(t+h−ts))(T̄+
ss − T̄−

ss), (9)

where β is a fitting parameter. Please note that higher order

approximation is also possible with more fitting parameters.

Finally, according to (6), T̄ (t+ h) can be estimated as

T̄ (t+ h) ≈ T̄−

ss + (1− e−β(t+h−ts))(T̄+
ss − T̄−

ss). (10)

With the estimated package node temperature T̄ (t+h), the

power budget of the local core can be solved from equation (4).

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

10 30 50 70 90

Active number

50

100

150

200

250

P
o

w
e

r
b

u
d

g
e

t
(W

)

DBP TSP GDP

10 30 50 70 90

Active number

0

50

100

150

200

250

M
IP

S

DBP TSP GDP

(a) bzip2

10 30 50 70 90

Active number

50

100

150

200

250

P
o

w
e

r
b

u
d

g
e

t
(W

)

DBP TSP GDP

10 30 50 70 90

Active number

0

50

100

150

200

M
IP

S

DBP TSP GDP

(b) gobmk

10 30 50 70 90

Active number

50

100

150

200

250

P
o

w
e

r
b

u
d

g
e

t
(W

)

DBP TSP GDP

10 30 50 70 90

Active number

50

100

150

200

250

300

M
IP

S

DBP TSP GDP

(c) hmmer

10 30 50 70 90

Active number

50

100

150

200

250

P
o

w
e

r
b

u
d

g
e

t
(W

)

DBP TSP GDP

10 30 50 70 90

Active number

0

50

100

150

200

M
IP

S

DBP TSP GDP

(d) lbm

10 30 50 70 90

Active number

50

100

150

200

250

P
o

w
e

r
b

u
d

g
e

t
(W

)

DBP TSP GDP

10 30 50 70 90

Active number

20

40

60

80

100

120

M
IP

S

DBP TSP GDP

(e) mcf

10 30 50 70 90

Active number

50

100

150

200

250

P
o

w
e

r
b

u
d

g
e

t
(W

)

DBP TSP GDP

10 30 50 70 90

Active number

0

50

100

150

200

M
IP

S

DBP TSP GDP

(f) milc

Fig. 5: The power budget and the average performance (MIPS) of the 100-core system with the three power budgeting method.

The whole flow of the distributed power budgeting method

DBP is summarized in Fig. 3b.

C. Computational complexity analysis

The new method mainly contains the active core locating

and the power budget computing. For each active core, the

locating algorithm has a computational complexity of O(1),
because it only requires one random trial and several extra

trials if the previous trial fail, which is irrelevant to the problem

size (the total core number and the active core number).

The power budget computing for each local active core also

has a complexity of O(1), because both the package node

temperature estimation in (10) and the power budget solving

in (4) are irrelevant to the problem size.

III. EXPERIMENTAL RESULTS

We implemented DBP using Matlab and performed exper-

iments on a PC with Intel i7-9750H CPU and 8GB memory.

To show the advantage of DBP, we compare it with two

state-of-the-art power budgeting methods for dark silicon

systems: thermal safe power (TSP) [3] and greedy dynamic

power (GDP) [4]. In this experiment, TSP provides the power

budget for a given active core distribution. Since TSP does not

have the ability to locate the active cores, it uses the active core

distribution determined by DBP unless mentioned explicitly.

The experiments are performed mainly on a 100-core sys-

tem, with scalability/runtime analysis also performed on a

49-core system and a 144-core system, assuming mesh NoC

is used such that the communication latency between the

adjacent cores is low. We use HotSpot [10] to build the system

thermal model, which is used to perform thermal simulation

and extract the local thermal model for DBP. The power

budgeting time step is set as 10ms for all methods. For the

100-core system, we set nth = 0, 1, 2, 3, 4 for the existing

active core number range of [0, 35], [36, 48], [49, 57], [58, 74],
[75, 100], respectively, which balances the active core locating

quality and computing speed.

First, we test the accuracy of T̄ss trained through linear

regression. By randomly activating the cores in the 100-core

Fig. 6: The runtime of PARSEC benchmarks with different

power budgeting methods. TSP uses the default first unused

mapping and TSP dbpmap shares the DBP mapping.

system, 1 × 106 error samples of T̄ss are collected, with an

average absolute error of 0.12 ◦C and variance of 0.024. We

also tested the transient thermal estimation error of the local

model (eq (4)) in a power budgeting problem with ambient

temperature as 45 ◦C and threshold temperature as 80 ◦C.

Through 60 simulations of 1 s duration (error sample step

10ms) after a random active core map switching, we collected

around 2.8 × 105 error samples, where the average absolute

error is 1.2 ◦C and the variance is 1.6.

Then, we show the power budget and system performance

(million instructions per second (MIPS)) results of the 100-

core system with different methods in Fig. 5. In this experi-

ment, the system power is obtained using Wattch by running

the SPEC CPU 2006 benchmarks on each active core with

Alpha architecture. The ambient temperature and the threshold

temperature are set as 20 ◦C and 80 ◦C, respectively. We

can see that DBP brings a similar power budget compared

with GDP in all benchmarks. The power budget of TSP is

significantly lower than the other two, because TSP, being the

only static power budgeting method, can only provide a con-

servative power budget based on the steady state thermal state.

Thanks to the higher power budgets, the system performance

is also higher with DBP and GDP than with TSP, as shown in

Fig. 5. Please note that DBP does not necessarily outperform

GDP in system performance because DBP can be interpreted

as a distributed approximation of the centralized GDP method.

Next, we analyze the multi-threaded performance of the

100-core system with DBP. This experiment is performed

using HotSniper [11] running PARSEC benchmarks with Intel

X86 architecture and the other default settings. The ambient

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

(a) DBP. (b) GDP.

(c) TSP first unused mapping. (d) TSP DBP mapping.

Fig. 7: Transient temperatures of the 100-core system running

“swaptions” benchmark with different power budgeting meth-

ods, simulated using HotSniper with the threshold of 80 ◦C.

temperature and the threshold temperature are set as 45 ◦C
and 80 ◦C, respectively. TDP is 100W. Power budgeting

is activated every 10ms and when the active core number

changes. We have tested all 8 supported PARSEC benchmarks

with the largest recommended thread number, by running

simlarge dataset except for “canneal” and “dedup” running

simsmall due to their excessive simulation time and “x264”

running simmedium because of the inability to run simlarge.

The runtime results of the PARSEC benchmarks are given

in Fig. 6. GDP generally leads to the shortest runtime. DBP

usually finishes second. It is slower than GDP mainly due to

the lacking of global information as a distributed method. For

the two TSP methods, TSP with DBP mapping performs better

than the original TSP with first unused mapping, because

active core clusters are avoided. For benchmark “canneal”,

all methods perform similarly. This is because “canneal” is a

memory-intensive application with low CPU utilization, power

budget is not its major performance constraint.

The transient temperature results of the “swaptions” bench-

mark are shown in Fig. 7. We can see that all methods lead

to safe temperatures except for a short and small temper-

ature overshot at the beginning with DBP, caused by the

distributed transient temperature estimation inaccuracy. With

higher power budgets, DBP and GDP bring the active cores’

temperatures closer to the threshold than TSP, which explains

their superiority in system performance.

Finally, we demonstrate the computing overhead of DBP,

with the runtime results shown in Table I. As a distributed

method, DBP shows a great scalability advantage as its run-

time is both small and irrelevant to the problem size (core

number and active core number). Although performs best in

power budgeting accuracy, GDP has the worst performance

in overhead as expected. TSP performs relatively well in

overhead with a small but still larger runtime than DBP. We

remark that TSP does not need to re-compute the power

budget unless the active core distribution changes. However, its

TABLE I: The average computing times of different power

budgeting methods for one power budgeting time step.

Core Active DBP GDP TSP
(ms) (ms) (ms)

49
5 0.03 0.14 0.02
25 0.03 0.59 0.05
44 0.03 1.36 0.08

100
10 0.03 0.26 0.02
50 0.03 1.72 0.09
90 0.03 4.63 0.17

144
14 0.03 0.42 0.03
72 0.03 3.67 0.14
130 0.03 10.82 0.28

overhead grows with the problem size. It also does not have the

active core locating ability and cannot compute power budget

according to the current thermal state as shown previously.

IV. CONCLUSION

In this brief, we have presented a distributed power budget-

ing method called DBP for many-core systems in dark silicon.

DBP locates each active core to form a good active core

distribution and computes the power budget for each active

core, both in a distributed way. Experiments show that DBP

outperforms the state-of-the-art power budgeting methods TSP

and GDP on many-core systems in dark silicon, by achieving

an accurate power budgeting and a low computing overhead

with good scalability at the same time.

REFERENCES

[1] M. Taylor, “A landscape of the new dark silicon design regime,” IEEE

MICRO, vol. 33, no. 5, pp. 8–19, October 2013.
[2] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA

challenges in the dark silicon era,” in Proc. Design Automation Conf.

(DAC), June 2014.
[3] S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel,

“Thermal safe power (TSP): Efficient power budgeting for heteroge-
neous manycore systems in dark silicon,” IEEE Trans. on Computers,
vol. 66, no. 1, pp. 147–162, January 2017.

[4] H. Wang, D. Tang, M. Zhang, S. X.-D. Tan, C. Zhang, H. Tang, and
Y. Yuan, “GDP: A greedy based dynamic power budgeting method for
multi/many-core systems in dark silicon,” IEEE Trans. on Computers,
vol. 68, no. 4, pp. 526–541, April 2019.

[5] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-core
in dark silicon era,” in Proc. Design Automation Conf. (DAC), May
2013.

[6] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, “Thermal constrained
resource management for mixed ILP-TLP workloads in dark silicon
chips,” in Proc. Design Automation Conf. (DAC), June 2015.

[7] A. Kanduri, M.-H. Haghbayan, A. M. Rahmani, M. Shafique, A. Jantsch,
and P. Liljeberg, “adBoost: Thermal aware performance boosting
through dark silicon patterning,” IEEE Trans. on Computers, vol. 67,
no. 8, pp. 1062–1077, August 2018.

[8] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and
energy management of high-performance multicores: Distributed and
self-calibrating model-predictive controller,” IEEE Trans. on Parallel

and Distributed Systems, vol. 24, no. 1, pp. 170–183, January 2013.
[9] R. Diversi, A. Bartolini, and L. Benini, “Thermal model identification of

computing nodes in high-performance computing systems,” IEEE Trans.

on Industrial Electronics, vol. 67, no. 9, pp. 7778–7788, September
2020.

[10] W. Huang, K. Sankaranarayanan, K. Skadron, R. J. Ribando, and M. R.
Stan, “Accurate, pre-RTL temperature-aware processor design using a
parameterized, geometric thermal model,” IEEE Trans. on Computers,
vol. 57, no. 9, pp. 1277–1288, 2008.

[11] A. Pathania and J. Henkel, “HotSniper: Sniper-based toolchain for many-
core thermal simulations in open systems,” IEEE Embedded Systems

Letters, vol. 11, no. 2, pp. 54–57, June 2019.

