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Abstract—Temperature control of the new generation inte-
grated multi-core system is challenging. This is because the leak-
age power, which is significant in modern systems, is nonlinearly
related to temperature, resulting in a complex nonlinear control
problem in thermal management. In this paper, a new dynamic
thermal management (DTM) method with compact piecewise
linear (PWL) model based predictive control is proposed to solve
the nonlinear control problem. First, a compact PWL thermal
model, which takes dynamic power as input, is built by combining
multiple local compact linear thermal models expanded at several
Taylor expansion points. These local compact linear thermal mod-
els are obtained by sampling based model order reduction (MOR)
with high accuracy. Their Taylor expansion points are selected by
a systematic scheme which exploits the thermal behavior property
of the multi-core chips. Based on the compact PWL thermal
model, a new predictive control method is proposed to compute
the future power recommendation for DTM. By approximating
the nonlinearity accurately with the compact PWL thermal model
and being equipped with predictive control technique, the new
DTM achieves an overall high quality temperature management
with smooth and accurate temperature tracking. Experimental
results show the new method outperforms the linear model
predictive control based method and the echo state network
based predictive thermal management method in temperature
management quality with lower computing overhead.

Index Terms—Thermal management, leakage power, multi-
core, model predictive control.

I. INTRODUCTION

Power density of integrated multi-core systems keeps in-

creasing with technology scaling, causing severe thermal re-

lated problems, including system reliability and performance

degradation issues [1]. Power budgets, including thermal de-

sign power (TDP) [2] and greedy dynamic power (GDP) [3],

were provided as the power limit to relieve the high tem-

perature induced reliability problems. In order to dynamically

adjust the power of multi-core systems, thermal/power man-

agement actions including task migration [4] and dynamic

voltage & frequency scaling (DVFS) [5]–[7] were introduced.
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Then, based on these basic management actions, researchers

proposed many dynamic thermal management (DTM) methods

to control the temperature of the multi-core system at runtime.

For example, a DTM method with fan speed control was

proposed in [8] to optimize the overall energy consumption.

Liu et al. proposed a DTM method which considers the tran-

sient temperature behavior of the packaged multi-core system

to enhance the temperature control quality [9]. A scheduling

based DTM method was invented for heterogeneous multi-core

system [10]. Recently, Wang et al. introduced a hierarchical

DTM method for the many-core system with low computing

delay [11].

However, most DTM methods do not consider leakage

power, resulting in less accurate thermal management. For

high performance systems manufactured using new planar

CMOS technology, leakage power, which even accounts for

over 50% of the total power consumption, cannot be ne-

glected anymore [12], [13]. Although the recent introduction

of FinFET temporally relieved the leakage power problem,

the leakage power can still be significant for 7nm FinFET

when low/normal VTH transistor is used to achieve high per-

formance [14], and the leakage power ratio may increase again

for the future FinFET technology nodes. To make matters

worse, leakage power depends on temperature exponentially,

forming a positive feedback between power and temperature,

which can lead to thermal runaway in the worst case [8], [15].

Therefore, the leakage power induced thermal problem has

already become one of the most important limiting factors of

multi-core system performance today.

When leakage power is considered, the model in DTM,

which connects power and temperature, takes only dynamic

power as input and temperature as output. This is because

dynamic power is directly controllable by the system (such as

by frequency scaling and task scheduling) but leakage power

is not. In this work, we call such model as the leakage-aware

thermal model or simply thermal model if no confusion will be

caused. The leakage-aware thermal model is nonlinear because

the nonlinear leakage power is contained inside it.

The major challenge of considering leakage power in DTM

lies in building a leakage-aware thermal model which sat-

isfies the following two conditions at the same time: first,

it should has high accuracy in leakage modeling; second, it

should be easy to integrate with the multi-core DTM methods.

However, it is difficult to satisfy both conditions because

most DTM methods require a linear thermal model, but the

accurate leakage-aware thermal model is inherently nonlinear
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as aforementioned. Existing methods make compromises by

satisfying only one out of the two conditions. For example,

some existing leakage-aware DTM methods [1], [11], [16],

[17] use linear models to approximate the original nonlinear

leakage model, making it compatible with the traditional linear

DTM framework in order to satisfy the second condition.

However, they suffer from low accuracy due to the large

linear approximation error. On the other hand, DTM with a

quadratic polynomial based approximation thermal model was

introduced in [18], which has high leakage modeling accuracy.

However, since developing an elegant multi-core DTM method

for such quadratic polynomial leakage model is difficult, this

DTM is developed based on single-core thermal model with

scalar quadratic polynomial leakage model, which can only

be used for single-core systems [18]. Recently, a leakage-

aware DTM using neural network thermal model was proposed

in [19]. Being a black-box model based method, it is more

suitable for the case where the detailed structural information

of the packaged multi-core system is unavailable. It generally

has lower accuracy compared with the white-box model based

methods due to the absence of the detailed package structural

information.

The discussions above reveal that it is difficult to design an

accurate leakage-aware predictive DTM method for multi-core

systems, especially with the white-box thermal model built

accurately from the structural information of the multi-core

system. In this work, we resolve this problem by proposing

a leakage-aware DTM using compact piecewise linear (PWL)

model based predictive control. The major contributions of this

work include:

• In order to solve the nonlinear control problem in

leakage-aware thermal management, we propose to use a

PWL thermal model to approximate the original nonlinear

thermal model. With the PWL thermal model, predictive

control is enabled for leakage-aware DTM.

• A unified formulation of the PWL thermal model for

leakage-aware DTM is derived. Specially, a systematic

Taylor expansion point selection scheme is developed

to formulate the PWL thermal model by exploiting the

thermal behavior property of the integrated multi-core

system. The resulted PWL thermal model formulation is

concise and elegant. Therefore, it can be integrated into

the predictive control framework seamlessly.

• To reduce the runtime and memory overheads of DTM,

sampling based model order reduction (MOR) is intro-

duced to reduce the size of the PWL thermal model.

Thanks to the sampling based MOR, the resulted compact

PWL thermal model achieves both high compression rate

and high accuracy.

• We propose the compact PWL thermal model based

predictive control framework by integrating the compact

PWL thermal model into model predictive control (MPC).

Although being a nonlinear control, the compact PWL

thermal model based predictive control still retains the

concise structure of the traditional linear MPC. By using

the new temperature control method, accurate future

power recommendations can be computed for the multi-

core system.

• We have experimentally compared the new DTM method

with traditional DTM using linear thermal model based

MPC and the echo state network based predictive thermal

management method. Our numerical results show the new

method outperforms both methods in thermal manage-

ment quality with lower computing overhead.

II. BACKGROUND

In this section, the power models used in this work, in-

cluding dynamic power model and leakage power model, are

introduced first. After that, we briefly review DTM using

model predictive control (MPC) and reveal its problem in

leakage power consideration.

A. Power modeling

The total power of an integrated multi-core system is

composed of dynamic power pd and leakage power ps (which

is also called static power). In this subsection, we will briefly

present the modeling of dynamic power and leakage power.

1) Modeling of dynamic power: Dynamic power is caused

by the logic gate switching, whose value depends on the

activity of the core. It is expressed as

pd = αV 2
ddf, (1)

where Vdd and f are the supply voltage and clock frequency

of the core, respectively, and α is the activity factor of the

core. Dynamic power can be obtained by performance counter

based methods, which estimate the activity factor α through

performance counts [20].

2) Modeling of leakage power: Unlike dynamic power,

leakage power ps is not directly related to the core’s activity.

Instead, it depends on the temperature of the chip, and is

expressed as [15], [21], [22]

ps = VddIleak(Tp), (2)

where Tp is a scalar representing the temperature at one place

of the chip,1 Ileak is the leakage current which is nonlinearly

related to temperature.

In this work, we use an n-order polynomial model to

accurately model the nonlinear leakage current Ileak(Tp) as

Ileak(Tp) = αnT
n
p + αn−1T

n−1
p + · · ·+ α0. (3)

In order to see the accuracy of the leakage model given

in (3), Fig. 1 shows an HSPICE simulation result of leakage

using 7 nm PTM-MG FinFET models for high-performance

applications (7 nm PTM-MG HP NMOS and HP PMOS)

provided online at [23], and the leakage computed by the

leakage model (with order 3). From the figure, we can see

that the leakage model (3) has high accuracy for all common

temperatures of multi-core chips.

Finally, the leakage power is accurately modeled by com-

bining equations (2) and (3).

1T introduced latter in (4) is a vector representing temperatures at multiple
positions.
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Fig. 1: Comparison of leakage of a PTM-MG 7 nm FinFET

from HSPICE simulation with leakage computed using 3-order

leakage model (3).

B. Thermal management using model predictive control

In this part, we briefly introduce the MPC based DTM and

reveal its difficulty in handling leakage power. For a detailed

introduction of MPC based DTM, please refer to [11].

In order to use model predictive control (MPC) in DTM, a

thermal model of the multi-core system should be built first.

For an l-core system with m total thermal nodes, we can get

its thermal model as [3], [11], [15], [17]

GT (t) + C
dT (t)

dt
= BP (T, t),

Y (t) = LT (t),
(4)

where T (t) ∈ R
m is the temperature vector (distinguished

from scaler Tp), representing temperatures at m places of the

chip and package; G ∈ R
m×m and C ∈ R

m×m contain

equivalent thermal resistance and capacitance information,

respectively; B ∈ R
m×l contains the power injection topology

information; P (T, t) ∈ R
l is the power vector of l cores,

including both dynamic power vector Pd(t) and leakage power

vector Ps(T, t). Y (t) ∈ R
l is the output temperatures of l

cores; L ∈ R
l×m is the output selection matrix which selects

the l core temperatures from T (t).
In order to be used in computer, the thermal model (4) is

discretized for a given time step h as [24]

T (k + 1) = AT (k) +DPd(k)

+

∫ h

0

e−(h−τ)C−1GC−1BPs(T, τ) dτ,
(5)

with

A = e−hC−1G, D =

∫ h

0

e−(h−τ)C−1GC−1B dτ,

where k is the time in discrete form.2 Note that A ∈ R
m×m

and D ∈ R
m×l are constant matrices which are computed

offline for a given time step h [24].

By using the thermal model (5), MPC calculates the future

power recommendation Pd to track a user defined temperature,

with the following steps.

First, at current time k, we denote the future dynamic power

trajectory (which is unknown and needs to be computed in the

2We use k to represent the discrete time, and t to represent the continuous
time. k + 1 is equivalent to t+ h, with h as the discretization time step.

end) into the future Nc steps (where Nc is called the control

horizon in MPC) as

Pd = [Pd(k)
T , Pd(k + 1)T , . . . , Pd(k +Nc − 1)T ]T . (6)

Then, the prediction of core temperatures is written as

Y = [Y (k + 1)T , Y (k + 2)T , . . . , Y (k +Np)
T ]T , (7)

where Np is called the prediction horizon (with Np > Nc) in

MPC and Y (k+ j) is the predicted temperatures at time k+ j

using the information of current time k.

Corresponding to (7), the target temperature vector Yg ∈ R
l

is written in a vector trajectory as

Yg = [Y T
g , Y T

g , . . . , Y T
g ]T . (8)

The objective of the MPC is to bring the predicted output

temperature Y as close as possible to the target temperature

Yg by adjusting the dynamic power Pd, which is equivalent

to minimizing the following cost function

J = (Yg − Y)T (Yg − Y). (9)

Please note that Y is a function of Pd.

Next, optimization is performed to find the Pd which

minimizes (9). However, because there is an integral with

the nonlinear Ps in thermal model (5), we cannot express

Y using Pd (which is the only controllable variable) as the

sole variable. Therefore, the optimization problem (9) cannot

be solved to find the future dynamic power recommendation,

meaning predictive control cannot be directly used for the

leakage-aware thermal management.

III. LEAKAGE-AWARE TEMPERATURE CONTROL USING

COMPACT PIECEWISE LINEAR MODEL

In this section, we present the new leakage-aware DTM

method using compact PWL model based predictive control.

The basic idea is to first build a compact PWL thermal

model by combining multiple local compact linear thermal

models expanded at several Taylor expansion points, and

then formulate the predictive control framework based on

this compact PWL thermal model. Specifically, we first show

how to build the local linear thermal model using Taylor

expansion in Section III-A and how to reduce it into a

compact local linear thermal model using sampling based

MOR in Section III-B. Then, how to formulate the compact

PWL thermal model by combining the compact linear thermal

models with a systematic Taylor expansion points selection

scheme is given in Section III-C. Finally, we present the

new predictive control framework based on the compact PWL

thermal model in Section III-D.

A. Building local linear thermal model using Taylor expansion

Before presenting the PWL methods, we first show the

formulation of the local linear thermal model (at a Taylor

expansion point) which will be used in PWL approximation.

First, we can get a local linear leakage power model

by performing Taylor expansion on the original nonlinear

model (2), (3), expressed in matrix-vector form as

Ps = P̂ + ĤT, (10)
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where P̂ ∈ R
l is a constant vector not associated with

temperature T , and Ĥ ∈ R
l×m is a constant matrix containing

the first order derivative information from Taylor expansion.

Due to the page limitation, please refer to [15] for the detailed

derivation of (10).

Then, by integrating (10) into (4) and letting Ĝ = G−BĤ ,

we obtain a local linear thermal model as

ĜT (t) + C
dT (t)

dt
= B(Pd(t) + P̂ ),

Y (t) = LT (t).
(11)

B. Compact local linear thermal model formulation via sam-

pling based MOR

The local linear thermal model built above is large in size,

which leads to large computing overhead in DTM with PWL

thermal model composed of multiple such local models. There-

fore, we introduce a sampling based model order reduction

(MOR) technique to build a compact local linear thermal

model, which then leads to a compact PWL thermal model.

MOR has been studied intensively to reduce the computing

overhead in control systems. The widely used MOR method

in control is truncated balanced realization (TBR) [25], which

generates a reduced model with a global error bound over

all frequencies. However, TBR’s two shortcomings make it

unsuitable for reducing the local linear thermal model. First,

the TBR process includes solving Lyapunov equations, which

is known to be computationally expensive for a large original

model like the local linear thermal model [26]. Second, the

reduction of local linear thermal model prefers high accuracy

in low frequency range rather than TBR’s global accuracy

over all frequencies. This is because the thermal model is a

low pass filter, which only respondes to low frequency inputs

(powers) [27], [28], preserving accuracy over frequencies (high

frequencies in thermal model) with extremely low frequency

response is a waste.

Instead, we introduce a sampling based MOR to reduce

the local linear thermal model. The sampling based MOR

first solves the original system (11) in frequency domain at

ns frequency sample points jω1, jω2, . . . , jωns
, where the ith

solution is

zi = (Ĝ+ jωiC)−1B. (12)

All the solutions are then combined into a matrix

Z = [z1, z
∗
1 , z2, z

∗
2 , . . . , zns

, z∗ns
], (13)

where z∗i is the conjugate of zi.
3 Then, economic singular

value decomposition (SVD) is performed on matrix Z, and

we take the first q columns of the left singular matrix as U .

Finally, we obtain the reduced local linear thermal model by

projection with the projection matrix U as

ĜrTr(t) + Cr

dTr(t)

dt
= Br(Pd(t) + P̂ ),

Y (t) = LrTr(t),
(14)

where Ĝr = UT ĜU ∈ R
q×q , Cr = UTCU ∈ R

q×q , Br =
UTB ∈ R

q×l, Lr = LU ∈ R
l×q .

3Please note that adding the conjugate is not necessary for the DC sample
point because the solution is real.

It has been proved that the left singular matrix of Z

contains original system information at the sampled frequency

points [29]. Choosing the first q columns of the left singular

matrix as projection matrix U further eliminates the redundant

information via principal component analysis (PCA), which

balances the accuracy and compactness of the reduced model

around the sampled frequency points.

Similar to (5), the local linear thermal model (11) can be

discretized into the following compact local linear thermal

model form but without the integral term in (5) as:

Tr(t+ h) = Â(h)Tr(t) + D̂(h)Pd + D̂(h)P̂ ,

Y (t+ h) = LrTr(t+ h),
(15)

with

Â(h) = e−hC−1

r
Ĝr , D̂(h) =

∫ h

0

e−(h−τ)C−1

r
ĜrC−1

r Br dτ.

C. Compact PWL thermal model formulation

In this part, we formulate the compact PWL thermal model

using the reduced local linear thermal model presented in

previous parts. The compact PWL thermal model can then be

integrated into the predictive control framework for leakage-

aware DTM.

1) Taylor expansion thermal points selection scheme for

leakage-aware DTM: Although there exists PWL approxima-

tion based leakage-aware thermal estimation method [15], it

is not straightforward to apply similar PWL approximation to

DTM due to the difficulty in Taylor expansion thermal points

selection. In thermal estimation problem, the Taylor expan-

sion point can be easily chosen by using the self-estimated

temperature or the on-chip thermal sensor temperature [15].

However, DTM will not know the proper Taylor expansion

points directly, because its computing target is the future power

recommendation, not the temperature. The only things that

DTM knows are the current temperature, the target tempera-

ture, and also the fact that the temperature prediction trajectory

(excited by the unknown future power recommendation to be

computed) should be between the two temperatures. In this

work, we propose a novel Taylor expansion points selection

scheme as the following.

First, we define two thermal management cases called rising

case and falling case, depending on the current temperature of

the core. We have the falling case if the current temperature is

higher than the target temperature. In this case, DTM should

lower the core temperature to target temperature for reliability.

Otherwise, we have the rising case to boost performance. Here

we use the rising case as the illustration example. Please note

that DTM for the falling case can be performed in the same

way.

Let us denote T0 as the lowest temperature and Tn as the

target temperature of the chip.4 The operating temperature

of the rising case lies between T0 and Tn. We introduce n

potential expansion points in the operating temperature range:

{T1, T2, . . . , Tn}.5 For simplicity, assume all the potential

4Usually, the lowest temperature is set to be the same as or slightly higher
than the ambient temperature.

5Please note that T0 is not a potential Taylor expansion point.
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Fig. 2: The sketch map of the PWL method for one control

step. T1, T2, . . . , Tn are the potential Taylor expansion points.

t, t + h1, . . . , t + hn are the potential local linear model

switching time points. The black solid line is the extreme

temperature trajectory. The red dashed line is a common

temperature trajectory. The blue dot line represents the tem-

perature trajectory which is already very close to the target at

time t.

expansion points are uniformly placed in the operating temper-

ature range, i.e., Ti−Ti−1 = Tn−T0

n
for any integer i ∈ [1, n],

as shown in Fig. 2.

Next, corresponding to the Taylor expansion points, we also

need to determine the potential local model switching time

points {t, t + h1, . . . , t + hn} within one control step. The

extreme temperature trajectory in the rising case, which starts

from T (t) = T0 and ends at T (t + hn) = Tn is used to

determine these time points. As shown in Fig. 2, the extreme

temperature trajectory is the solid black line, and the switching

time point t + hi is chosen as the one which satisfies T (t +
hi) = Ti for this trajectory.

PWL approximation will be performed by using the linear

local thermal models constructed using some of these potential

Taylor expansion points {T1, T2, . . . , Tn} switched only at the

corresponding switching time points {t, t+h1, . . . , t+hn} as

shown in the next part.

2) Compact PWL thermal model for temperature predic-

tion: If the current temperature T (t) lies between Ti−1 and

Ti, the DTM thermal prediction trajectory should look like the

red dashed line in Fig. 2 exited by the future power recom-

mendation (which is unknown and need to be computed).6 For

this trajectory, Tr(t + hn), which is the reduced temperature

state of T (t+ hn), can be represented7 in the following way.

First, Tr(t+ hi), which is the reduced temperature state of

T (t + hi) (shown as red font in Fig. 2), is represented using

the compact local linear model (15) expanded at Ti as

Tr(t+ hi) = ÂiTr(t) + D̂iPd + D̂iP̂i, (16)

where Âi = Â(hi), D̂i = D̂(hi), and P̂i are the local linear

thermal matrices in (15) with Ti as the expansion point.

6We plot the end point of the red dashed line to be slightly off target, since
predictive control does not guarantee perfect target hitting at the first control
step.

7Tr(t+hn) is represented, but not computed, because Pd (the future power
recommendation) is the actual unknown to be calculated.

Then, the reduced temperature states at the subsequent time

points t+hi+1, t+hi+2, . . ., t+hn are represented iteratively

by using the compact local linear thermal models expanded at

Ti+1, Ti+2, . . ., Tn, respectively, as the following:

Tr(t+ hi+1) =Âi+1(Ui+1)
†UiTr(t+ hi)

+ D̂i+1Pd + D̂i+1P̂i+1,

Tr(t+ hi+2) =Âi+2(Ui+2)
†Ui+1Tr(t+ hi+1)

+ D̂i+2Pd + D̂i+2P̂i+2,

...

Tr(t+ hn) =Ân(Un)
†Un−1Tr(t+ hn−1)

+ D̂nPd + D̂nP̂n, (17)

where Âj = Â(hj − hj−1) and D̂j = D̂(hj − hj−1) for

j = i + 1, i + 2, . . . , n. Please note that we have performed

the reduced temperature state transformation in (17) using

projection matrices at two adjacent expansion points to keep

the boundary continuous at compact PWL local model switch-

ing, as shown in details in [15]. For example, (Ui+1)
†Ui

is multiplied to Tr(t + hi) in (17), where Ui+1 and Ui

are the projection matrices in (14) with Ti and Ti+1 as the

expansion points, respectively, and † denotes Moore-Penrose

pseudoinverse.

Finally, the reduced temperature state at the end of the

control step (t+hn) is expressed by combining the equations

above as

Tr(t+ hn) = ÂTr(t) + D̂Pd + D̂iP̂i + · · ·+ D̂nP̂n, (18)

where

Â =Ân(Un)
†Un−1Ân−1 · · · Âi+1(Ui+1)

†UiÂi,

D̂ =Ân(Un)
†Un−1Ân−1 · · · Âi+1(Ui+1)

†UiD̂i

+ Ân(Un)
†Un−1Ân−1 · · · Âi+2(Ui+2)

†Ui+1D̂i+1

+ · · ·+ D̂n,

D̂i =Ân(Un)
†Un−1Ân−1 · · · Âi+1(Ui+1)

†UiD̂i.

In order to be compatible with MPC, we rewrite (18) into

the discrete form as

Tr(k + 1) = ÂTr(k) + D̂Pd(k) + D̂iP̂i + · · ·+ D̂nP̂n,

Y (k + 1) = LrTr(k + 1). (19)

We call this newly formulated thermal model (19) as the com-

pact PWL thermal model. The compact PWL thermal model

matrices will be computed offline after Taylor expansion points

selection.

Now, we have successfully approximated the original non-

linear temperature prediction using the compact PWL thermal

model in (19). Next, we will demonstrate how to formulate

the compact PWL thermal model based predictive control by

replacing the original nonlinear thermal prediction (5) with the

compact PWL model based thermal prediction (19).
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D. Compact PWL model based predictive control

With the compact PWL thermal model (19), MPC should

be able to calculate the power recommendation Pd to track a

user defined output temperature as presented in this part.

By analyzing the MPC mechanism, we know the future

temperature prediction trajectory can be described as the

following. For the first control time step8 into the future, the

temperature prediction trajectory is similar to the red dashed

line in Fig. 2, because the power recommendation will bring

the temperature toward the target temperature. Assume the

temperature prediction is close to the target temperature at

time k + 1, then at time k + j, where j = 2, 3, . . . , Np, all

temperature prediction trajectories should look like the blue

dot line in Fig. 2.

With the observation above, for Np steps temperature pre-

diction into the future (from k to k + Np), we only need to

use the temperature prediction with multiple Taylor expansion

points at the first control step (from time k to k+1) expressed

by the PWL thermal model (19).

For the rest of the control steps (from k+1 to k+Np), only

one segment of the PWL thermal model (15) is needed with

target temperature Yg (which equals to Tn) as the expansion

point. The temperature predictions for these steps are written

into discrete form as

Tr(k + j) = ÂtTr(k + j − 1) + D̂tPd(k + j − 1) + D̂tP̂t,

Y (k + j) = LrTr(k + j), (20)

where the matrices At, Dt, and Pt are obtained by setting the

time discretization step as hn and Taylor expansion point as

the target temperature in (15), for j = 2, 3, . . . , Np.

Combining equations (19) and (20), we can get the predicted

temperature trajectory Y as

Y = FTr(k) + V Pd + φ1P̂ + φ2P̂t, (21)

where P̂ = [P̂T
i , P̂T

i+1, . . . , P̂
T
n ]T , P̂t = [0T , P̂T

t , . . . , P̂T
t ]T ,

F =





LrÂ

LrÂtÂ

.

.

.

LrÂ
Np−1

t
Â




,

V =





LrD̂ 0 · · · 0

LrÂtD̂ LrD̂t · · · 0

LrÂ
2
t
D̂ LrÂtD̂t · · · 0

.

.

.
.
.
.

. . .
.
.
.

LrÂ
Np−1

t
D̂ LrÂ

Np−2

t
D̂t · · · LrÂ

Np−Nc

t
D̂t




,

φ1 =





LrD̂i LrD̂i+1 · · · LrD̂n

LrÂtD̂i LrÂtD̂i+1 · · · LrÂtD̂n

LrÂ
2
t
D̂i LrÂ

2
t
D̂i+1 · · · LrÂ

2
t
D̂n

.

.

.
.
.
.

. . .
.
.
.

LrÂ
Np−1

t
D̂i LrÂ

Np−1

t
D̂i+1 · · · LrÂ

Np−1

t
D̂n




,

8Please note that the duration from t to t + hn in Fig. 2 equals to only
one control step in MPC (for example, from k to k + 1, or from k + j − 1
to k + j).

(a) The package structure of the 16-core system. TIM
stands for thermal interface material.

core11 core12 core13 core14

core21 core22 core23 core24

core31 core32 core33 core34

core41 core42 core43 core44

(b) The chip structure of the 16-core
system.

(c) The architectural diagram of
the 16-core system with cores con-
nected by an NoC [30]. The circle
denotes the router in the NoC.

Fig. 3: The configuration of the 16-core system used for the

experiment.

φ2 =





0 0 0 · · · 0

0 LrD̂t 0 · · · 0

0 LrÂtD̂t LrD̂t · · · 0

0 LrÂ
2
t
D̂t LrÂtD̂t · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 LrÂ
Np−2

t
D̂t LrÂ

Np−3

t
D̂t · · · LrÂ

Np−Nc

t
D̂t





,

with 0 as the zero matrix with suitable size.

Plugging (21) into (9), standard MPC optimization is per-

formed to minimize (9) by making the first derivative of (9)

(with respect to Pd) equal to zero. The solution of Pd is

Pd = (V TV +R)−1V T (Yg −FTr(k)−φ1P̂ −φ2P̂t). (22)

At each MPC time k, only Pd(k) (the first element of Pd)

will be outputted as the power recommendation for thermal

management.

The proposed approach can be integrated into the thermal

management of the multi-core system as a software implemen-

tation. It can be executed in one of the cores in the multi-core

system or in a co-processor (if available), which distributes the

results Pd(k) to all the cores. Frequencies and task loads of

the multi-core system will be adjusted according to Pd(k).
How to perform the management actions based on future

power recommendation is presented in many DTM works such

as [11], which will not be given here due to page limitation.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the compact

PWL model based DTM method.

A. Basic experiment setup

The experiment is performed on a 16-core system plant with

its package, chip structure, and architectural diagram shown

in Fig. 3, where the cores are connected by a network-on-

chip (NoC) as given in [30]. When the DTM computation is

performed on one of the cores, the temperature information is

gathered from all cores and the computed power adjustment

information is sent to all cores through the NoC. The delay

of information gathering and dispatching is around 100 cycles
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for the NoC [30]. The thermal models for the plant, the new

method, and the traditional method share the same resolution

of 20× 20 for the chip, i.e., each core has 25 grids (thermal

nodes). The plant provides the average temperature of each

core for all DTM methods at the beginning of each control

step. The ambient temperature is 20 ◦C, and the target tem-

perature in DTM is 70 ◦C. We set the operating temperature

range for the rising case as from around 30 ◦C to 70 ◦C, and

the range for the falling case as from around 110 ◦C to 70 ◦C.

All the experiments are performed on a PC with an Intel Core

i7-8750H CPU and 16GB memory.

Power estimator Wattch [31] is used to generate the dynamic

power by running the standard SPEC benchmarks. The dy-

namic power traces from different SPEC benchmark applica-

tions are randomly assigned to different cores to create realistic

thermal loads. The golden leakage power of the multi-core

system plant is obtained by using the iteration based leakage-

aware thermal simulation method with simulation step 0.01 s.
The power of the NoC is ignored in the experiment, because it

is very small (less than 2mW for each router including both

dynamic power and leakage power) compared with the power

of the core (several watts for each core) as analyzed in [32].

The control step of DTM is set as 1 s. We assume the average

temperature of each core is measurable at the beginning of

each control step. Then the temperature state (T or Tr) is

estimated by Kalman filter using the measured temperatures.

In order to show the advantage of the new DTM method

with compact PWL model based predictive control (we call it

PWL DTM), we compare it with two methods. The first one

is the linear model based predictive control [11] (called the

traditional DTM), which uses a least square regression based

linear leakage model. We also compare the new method with

the state-of-the-art leakage-aware DTM method [19] which

is based on the echo state network (ESN) thermal model

(called ESN DTM). The ESN thermal model has 200 neurons,

which balances accuracy and speed. It is trained using 40000
input-output (dynamic power-temperature) samples generated

by the plant covering the full temperature range (from 30 ◦C
to 140 ◦C) in DTM.

B. Accuracy verification of the compact local linear thermal

model

First, we analyze and verify the accuracy of the compact

local linear thermal model generated by the sampling based

MOR.

We use three sampling points at 0Hz, 0.5Hz, and 1Hz
to reduce the 1612-order original model into compact models

with different orders. Then, we apply a 60W step power input

to core11, and plot the average transient simulation errors (for

the first 1 s simulation) of the reduced models with different

orders in Fig. 4a. We see that the reduced model with order

32 already reaches high accuracy (with average relative error

to be smaller than 0.001).

Then, we plot the frequency responses of the 32-order

reduced model and the original model in Fig. 4b (with both

input and output set at the grid at the upper left corner

of the chip). From the figure, we can see that the reduced
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Fig. 4: Accuracy analysis of the compact local thermal model

generated by the sampling based MOR.
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(b) The rising case.

Fig. 5: The transient temperatures of core22 using PWL DTM

(with 7 expansion points), traditional DTM, and ESN DTM.

All methods have NP = 1 and Nc = 1. The temperature target

is set as 70 ◦C. Power traces of different SPEC benchmark

applications are randomly assigned to different cores.

model, although much smaller in size, has a very similar

frequency response compared with the original model, for all

the important frequencies from DC to 100Hz. It only shows

visible errors beyond 100Hz, but such errors do not affect the

thermal estimation accuracy because the magnitudes at these

frequencies are extremely small.

C. Performance evaluation of leakage-aware DTM with com-

pact PWL model based predictive control

We apply PWL DTM, traditional DTM, and ESN DTM

to the 16-core system, and record the temperature control

performance results in Table I. In order to see the accuracy of

the PWL DTM with different configurations, we test it with

different expansion point number, prediction horizon length

Np, and control horizon length Nc.

We mainly focus on two DTM performances in the compar-

ison. The first is the average temperature tracking difference

between the actual plant temperature and the target temper-

ature for the first three control steps, which indicates the

effectiveness and accuracy of the DTM. The second is the

overhead (computing time and memory cost) of the DTM for

each control step.

For traditional DTM, the difference between the actual

temperature and the target temperature is large for all cases as

shown in Table I. Even for the best case, the average difference

is over 1.5 ◦C, because the linear model cannot approximate

the nonlinearity in leakage power accurately.

For ESN DTM, the temperature tracking difference is

smaller than the traditional DTM, because ESN, being a
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TABLE I: Computing time (time), storage memory (mem), and tracking difference (difference) comparison results of the PWL

DTM with traditional DTM and ESN DTM. Computing time is recorded as the average computing time for each thermal

management action (every 1 s), including the state estimation time by Kalman filter. The tracking difference is in ◦C.

Nc = 1,Np = 1 Nc = 3,Np = 4 Nc = 5,Np = 7
Case Methods time mem difference speed time mem difference speed time mem difference speed

(s) (KB) (◦C) up (s) (KB) (◦C) up (s) (KB) (◦C) up

Traditional 0.21 18488 1.77 NA 0.23 18488 1.74 NA 0.24 18488 1.76 NA
ESN 0.0035 113 1.29 NA 0.087 113 1.29 NA 0.22 113 1.60 NA

PWL (3 points) 0.0021 33 0.438 102× 0.0025 33 0.448 91× 0.0025 33 0.439 95×
rise PWL (5 points) 0.0023 55 0.435 93× 0.0026 55 0.444 87× 0.0026 55 0.436 92×

PWL (7 points) 0.0024 77 0.433 89× 0.0026 77 0.441 87× 0.0028 77 0.434 85×
PWL (9 points) 0.0025 99 0.432 86× 0.0026 99 0.440 87× 0.0028 99 0.433 85×
PWL (11 points) 0.0026 121 0.431 82× 0.0027 121 0.439 84× 0.0029 121 0.432 82×

Traditional 0.22 18488 1.58 NA 0.23 18488 1.60 NA 0.24 18488 1.58 NA
ESN 0.0043 113 0.93 NA 0.090 113 0.82 NA 0.23 113 0.69 NA

PWL (3 points) 0.0021 33 0.225 105× 0.0025 33 0.216 92× 0.0025 33 0.224 96×
fall PWL (5 points) 0.0022 55 0.221 100× 0.0025 55 0.213 92× 0.0027 55 0.219 89×

PWL (7 points) 0.0024 77 0.218 92× 0.0026 77 0.211 87× 0.0028 77 0.216 86×
PWL (9 points) 0.0024 99 0.216 92× 0.0027 99 0.210 85× 0.0029 99 0.215 83×
PWL (11 points) 0.0025 121 0.215 88× 0.0028 121 0.209 82× 0.0029 121 0.214 83×

nonlinear model, is able to model the nonlinearity of leakage

power. However, ESN DTM still shows some temperature

tracking difference of around 0.6 ◦C to 1.6 ◦C as shown in

Table I. The main reason is that the ESN thermal model is

a black-box model trained directly from the input-output data

samples, which lacks the detailed structural information of the

packaged multi-core system.

On the contrary, for the PWL DTM, the temperature

tracking difference is smaller than the traditional DTM for

all cases. This tracking accuracy improvement is achieved

by approximating the nonlinearity accurately using the PWL

thermal model. Especially, the average tracking difference

is only 0.209 ◦C when the number of expansion points is

11 for the falling case with Nc = 3 and Np = 4. The

PWL DTM also shows higher temperature tracking accuracy

than the ESN DTM. The reason is that the PWL thermal

model is a white-box model directly built from the detailed

system structural information using physical laws, which has

an accuracy advantage to the data training based black-box

model in ESN DTM.

On the runtime side, we observe from Table I that the

computing time of the PWL DTM is much smaller than

the traditional method, with up to 105× speed up. This is

because PWL DTM is based on the compact PWL thermal

model generated by sampling based MOR (composed of 32-

order local linear thermal models), which is much smaller

than the original thermal model (with order 1612) used in

traditional DTM. With much faster computing speed, PWL

DTM still achieves high temperature tracking accuracy as

discussed previously. PWL DTM also shows advantage to ESN

DTM in computing time, because ESN DTM has to perform

iterations to solve the nonlinear optimization problem in DTM

as its thermal model is nonlinear.

The memory cost of PWL DTM is also much smaller

than the traditional DTM thanks to its compact PWL model

generated by sampling based MOR. The memory cost of PWL

DTM increases linearly with the expansion point number as

shown in Table I. This is because more matrices computed

offline need to be stored, such as the PWL thermal model

matrices F and φ1, which is a trade-off between accuracy

and overhead in PWL DTM. The memory cost of PWL DTM

exceeds the 200-neuron ESN DTM when its expansion point

number is 11, but the accuracy of PWL DTM is much higher

than the 200-neuron ESN DTM with this expansion point

number.

Finally, we plot the transient plant temperature comparison

results for both falling case and rising case in Fig. 5 by assign-

ing power traces of different SPEC benchmark applications

randomly to different cores and activating all DTMs at 0 s.
We only plot the results of core22 due to page limitation. It is

observed that the temperature controlled by traditional DTM

shows large tracking difference especially when the current

temperature is far from target (the first control step from 0 s
to 1 s). ESN DTM, although being more accurate than the

traditional DTM, still shows visible tracking differences for

all three control steps. On the other hand, the temperature

controlled by PWL DTM tracks the target accurately even for

the first control step. This clearly demonstrates the advantage

of PWL DTM in temperature control quality.

In summary, experimental results show that PWL DTM

outperforms both the traditional DTM and ESN DTM in

temperature control quality because the PWL thermal model

approximates the nonlinear leakage power effects accurately.

It even achieves lower computing overhead thanks to the

compact thermal model generated by the sampling based

MOR.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new leakage-aware DTM

method for multi-core systems using compact PWL model

based predictive control. We built a compact PWL thermal

model by combining multiple compact local linear thermal

models which are expanded at several Taylor expansion points.

These compact local linear thermal models are obtained by

sampling based MOR with Taylor expansion points selected

by a systematic scheme which exploits the thermal behavior

property of the multi-core chips. Based on the compact PWL

thermal model, predictive control is used to find the opti-
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mal future power recommendations for thermal management.

Experimental results show the new method outperforms the

linear model based MPC method and the echo state network

based predictive thermal management method in temperature

management quality with lower computing overhead.

With PWL approximation of the nonlinearity between tem-

perature and leakage power, the new method is accurate with

DTM actions including dynamic frequency scaling and task

migration. In order to work with dynamic voltage scaling,

the nonlinearity between supply voltage and leakage power

should also be considered. The future research direction is

to extend the 1D PWL model based DTM to 2D PWL model

based DTM which also approximates the nonlinearity between

supply voltage and leakage power.
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