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Abstract—Dark silicon phenomenon is significant in today’s multi/many-core systems manufactured using new generation technology.

In order to enhance performance of dark silicon systems, power budget constrained dynamic optimizations are performed in various

ways including dynamic voltage and frequency scaling (DVFS) and task scheduling. However, power budgets given by existing

methods are generally over pessimistic, which greatly limit the capability of dynamic performance optimization methods. In order to

resolve this problem, we propose a dynamic power budgeting method, called Greedy based Dynamic Power (GDP). Different from

existing methods, which are steady state based and ignore active core distributions, GDP formulates the power budgeting problem as a

thermal-constrained combinational power optimization problem. To efficiently solve this problem, we propose two new ideas: first, we

transform the original power-optimization problem to an easier solving temperature-optimization problem; second, we employ a more

efficient greedy based algorithm that finds a sub-optimal active core distribution which maximizes power budget. The new method can

consider current temperature states and transient thermal effects, which were ignored by existing methods. Both theoretical studies

and experimental results show that GDP outperforms existing methods by providing a higher and less pessimistic power budget with

low computing cost and guaranteed thermal safety.

Index Terms—Power budget, dark silicon, multi/many-core system.

✦

1 INTRODUCTION

One of the most impressive technology advances in the
past fifty years comes from integrated circuit (IC), since IC
integration density has been increasing in an exponential
speed constantly for a long time, as described by the fa-
mous Moore’s law. However, power density begins to rise
with integration density after the breakdown of Dennard
scaling, resulting in serious thermal related problems in IC
systems [1]. Especially in recent years, power density has
increased beyond the power wall caused by limited heat
dissipation capability of the chip, leading to the fact that not
all components of the system can be activated or run at full
speed at the same time. Such system is called dark silicon
system or system in dark silicon [1], [2], [3], [4], [5].

For today’s multi/many-core systems in dark silicon,
although thermal constraint cannot be altered due to re-
liability concerns, several dynamic optimizations can be
applied in order to enhance system performance [6], [7]. For
example, the voltage and frequency levels (VF levels) of the
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active cores can be adjusted [8], [9], [10], and tasks can be
scheduled according to the active core number and their VF
levels [11], [12], [13], [14], [15], [16]. These optimizations are
clearly constrained by the maximum power consumption
allowed for each active core, because the VF level and
tasks running on the core determine power consumption,
which should never exceed such maximum power to avoid
thermal emergencies.

Determining the maximum allowed power is the fun-
damental step in order to improve the performance of a
multi/many-core system in dark silicon. Such maximum
allowed power of a system under practical constraints (like
thermal constraint) is called power budget, and the process
of finding the power budget is called power budgeting. The
mathematical power budgeting problem formulation will be
given later in Section 4.1.

It is very challenging to compute power budget dynam-
ically for dark silicon systems due to high computational
cost and overhead, because there are a lot of potential active
core distributions in dark silicon system. As a result, exist-
ing power budgeting methods like TDP [17] and TSP [18]
have to consider the thermally worst distribution case, and
compute the corresponding pessimistic power budgets to
ensure system’s absolute safety. In addition, only steady
state power and thermal conditions are considered in the
existing methods. It is well known that chip temperature
may change over 50 ◦C (for example, from 40 ◦C to 90 ◦C)
during everyday use. Current temperature of the chip has
huge impact on how much power it can consume under
the thermal constraint: obviously, a system at 40 ◦C has
much higher power budget than that of the same system
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at 90 ◦C for a future time duration. Although performance
boost (Intel calls it turbo boost [17] which allows the system
to consume a power higher than TDP for a short period
of time) can be used to partially relieve the problem, the
true power budget may not be fully utilized as shown both
logically and experimentally in [18].

In this work, we propose a Greedy based Dynamic
Power budgeting method (GDP) to solve the problems in
existing power bugeting methods for dark silicon. This work
has the following major contributions.

• First, in order to reduce computational complexity
to enable dynamic power budgeting, we develop a
greedy based method to find the sub-optimal active
core distribution (which maximizes the power bud-
get) and its corresponding power budget at runtime.

• Second, instead of providing a pessimistic steady
state power budget like existing works, we show
how to systematically take transient thermal effect
into consideration, and compute a higher but still
safe power budget which is adaptive to system’s cur-
rent temperature conditions. Such power budget is
very accurate since it is computed using the explicit
expression of chip’s future temperature without ap-
proximation.

The contributions above lead to many advantages of the
newly proposed methods over existing methods.

• First of all, because active core distribution is con-
sidered, GDP is able to provide a higher and less
pessimistic power budget compared with TSP which
can only provide over pessimistic power budget
according to the worst case active core distribution.

• In addition, as a greedy based method, GDP has low
computational complexity, which makes it capable of
providing accurate power budget at runtime.

• Last but not least, being able to consider the transient
temperature effect, GDP provides accurate power
budget which automatically adapts to current run-
ning conditions of the system. We show that transient
effect from both chip and package has huge impact
on power budget, and the power budget provided
by GDP can be significantly higher than the one
provided by steady state power budgeting method
like TSP when the system is at low temperature.

The remaining part of this article is organized as fol-
lows. We first review related work in power budgeting
of IC systems in Section 2. In Section 3, modeling of
the multi/many-core packaged IC system, which serves
as prerequisite knowledge for power budgeting, is briefly
introduced. Then, the new greedy based power budgeting
method is presented in Section 4. Next, experiments used
to verify the effectiveness and analyze the performance of
the new method are demonstrated in Section 5. Finally,
conclusion is drawn in Section 6.

2 RELATED WORK

In this section, we review the important work in power
budgeting of IC systems.

Since thermal issue has been the major performance
limiting factor for many years, many dynamic thermal
management (DTM) methods for IC systems have been
proposed to optimize system performance under thermal
constraint. There are methods that employ dynamic voltage
and frequency scaling (DVFS) to limit the system power
consumption in order to keep the temperature under ther-
mal constraints for both single-core system [19], multi-core
system [9], and 3D IC [20]. There are also researches that use
task migration to switch heavy and light tasks to meet the
temperature constraint [11], [12], [13], [14], [16], [21]. In [22],
techniques in terms of core throttling and process migration
policies have been proposed to perform DTM based on basic
control methods. A distributed DTM scheme was proposed
in [23] for thermally efficient on-chip network design. Work
in [24] introduces a hardware/software co-design archi-
tecture to improve the DTM efficiency and accuracy. Real
systems have implemented the DTM techniques mentioned
above. For example, IBM POWER5 is equipped with a dual
staged DTM using 24 digital temperature sensors [25]. IBM
POWER7 offers per-core frequency scaling and multiple
voltage islands to enable fine grained DTM in multi-core
processor [26]. Rather than performing DTM relying on pure
thermal sensor readings, there are works that perform ther-
mal management based on the future temperature predic-
tion of the processor [15], [27]. NADTM [14] was proposed
to further consider the neighbor core’s temperature impact
in the DTM temperature prediction process for multi-core
systems. However, these methods are not designed con-
sidering dark silicon, and may have problems when they
are directly applied to dark silicon systems (for example,
please see experiments using NADTM in Section 5.2). In
order to reduce the large computing overhead, scalable
DTM [28], power management [29], [30], and scheduling
schemes [31] were recently proposed for many-core sys-
tems. Resource management technique was proposed in [32]
for heterogeneous tiled multi-core systems by considering
power density.

Power budgeting is important and challenging for dark
silicon multi/many-core systems under temperature con-
straint [33]. TDP was proposed for general power budgeting
which calculates the lowest total power of the system which
may violate thermal constraint, and use such power as the
power budget of the whole system [17]. Although being
able to provide a safe power budget, over pessimistic is the
main drawback of TDP, especially for multi-core dark silicon
systems. This is because, in order to ensure the absolute
safety, TDP has to consider multi-core dark silicon system at
all running conditions (i.e., different number of active cores
and all combinations of active core positions), and choose
the lowest power budget from all these cases as the final
TDP power budget. Clearly, such power budget is lower
than the real allowable power for most running conditions.
Performance enhancement technique by powering on more
cores than the TDP allowed ones was proposed in [34]
which also considers process variation. Different from TDP
which provides only one power budget for all conditions,
TSP puts active core number into consideration [18]. If
the core distribution is given in advance, TSP calculates
the maximum allowed power budget for this distribution.
Otherwise, TSP provides a power budget by calculating
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Fig. 1. Typical structure of a packaged multi/many-core dark silicon
system.

the allowed maximum power for the thermally worst case
active core distribution, so that all other active core dis-
tributions will also be safe under such power. Although
TSP provides better power budgets compared to TDP, it is
still over pessimistic, owing to two reasons. First, TSP only
takes active core number and fixed active core distribution
(if given in advance) into account, without considering dif-
ferent active core distributions. So the given power budget
must be lower than the real maximum allowed powers. In
addition, TSP, similar to TDP, is a static method, which con-
siders only steady state power and thermal relationships.
However, a system with low temperature, is actually able
to consume a power higher than the steady state power
budget, for a future time duration. In our experiment, we
show the power budget difference can be huge if the tran-
sient temperature state of the system (with both chip and
package) is considered. In [35], our previous work shows
a heuristic based method to locate the active core position
in order to maximize the power budget of the dark silicon
systems. However, it requires large computing time and
such computing time is not consistent since heuristic is used.

3 MODELING OF MULTI/MANY-CORE DARK SILI-

CON SYSTEM

In order to determine the power budget of a multi/many-
core dark silicon system, power and temperature models of
the system are presented in this section.

In this work, the multi/many-core dark silicon system
is packaged in a common structure shown in Fig. 1(a).
Heat (power) generated from the chip is conducted through
thermal interface material (TIM), heat spreader, heat sink,
and finally dissipated to the air through convection. We
ignore the secondary heat path structure here, since much
fewer heat is dissipated through that path [36].

To perform thermal analysis for the packaged IC chip,
we usually divide both the chip and its package into multi-
ple blocks called thermal nodes, with partition granularity
determined by the accuracy requirements. The power con-
sumptions of the system are modeled as current sources,

with currents flowing into the appropriate thermal nodes.
For the dark silicon multi/many-core system (a 16-core
chip’s floorplan example is shown in Fig. 1(b)), we treat
each core as a thermal node with a current source, because
each core has very small area and highly correlated internal
power distribution. The other thermal nodes from the pack-
age are divided according to the chip thermal nodes. Then,
the thermal resistance and capacitance among all these
thermal nodes are determined, which model the thermal
transport and power response behaviors. Please note that
multi/many-core system floorplans different from the one
shown in Fig. 1(b) are fully compatible with this work,
and each core’s internal structures can also be modeled if
necessary [36], [37].

By using the knowledge above, for an n-core system with
m total thermal nodes, we can generate its thermal model
as

GT (t) + CṪ (t) = BP (t),

Tc(t) = BTT (t),
(1)

where T (t) ∈ R
m is the temperature rise vector, represent-

ing temperature rises (from the ambient temperature) at m
places of the chip and package; G ∈ R

m×m and C ∈ R
m×m

contain equivalent thermal resistance and capacitance in-
formation respectively; B ∈ R

m×n stores the information
of how chip powers are injected into the thermal nodes;
P (t) ∈ R

n is the power vector, which contains power
consumptions of n cores of the chip; Tc(t) ∈ R

n is the
output temperature rise vector, containing temperature rises
(from the ambient temperature) of the cores only. 1 For
detailed structures of G, C , and B matrices, please refer
to the thermal modeling works such as [36], [37], [38], [39].

With the model in (1), the task of power budgeting is
to determine the appropriate P , with a given temperature
threshold, as described next.

4 GREEDY BASED POWER BUDGETING FOR

MULTI/MANY-CORE DARK SILICON SYSTEMS

Power budgeting, by the name, provides a power budget,
which serves as a guidance and regulation constraint for
the system. One important property of power budgeting is
that the given power budget should be conservative such
that the system temperature does not violate the threshold
by strictly following the power budget. Because of such
conservative consideration and lack of dynamic budgeting
capability, existing power budgeting methods are over pes-
simistic, with the given power budget as the maximum
allowed worst case power under thermal constraint [18]. In
this section, we show that power budget can be conservative
but not over pessimistic, by introducing a dynamic power
budgeting method GDP. As a dynamic method, GDP no
longer considers the worst case, but directly provides max-
imum allowed power under thermal constraint, with low
computing cost and conservative property.

1. Temperature rises of the package thermal nodes are not outputted
because we do not need them explicitly in this power budgeting
problem. If they are explicitly needed (in some other applications), just
simply output T .
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Fig. 2. The equivalent heat dissipation circuit for normally packaged IC
chip.

First, we formulate the standard power budgeting prob-
lem and transform it into an equivalent problem of max-
imizing chip temperatures in Section 4.1. Next, we show
how to perform the proposed greedy based power bud-
geting for steady state problem in Section 4.2. Since the
new method is dynamic based, the steady state case serves
mainly as demonstration for easier understanding. Then, the
full dynamic version of GDP considering transient effects is
presented in Section 4.3. Finally, how GDP adapts to some
important practical situations is given in Section 4.7.

4.1 Power budgeting problem formulation

4.1.1 Standard power budgeting by maximizing total power

As discussed before, GDP, as a dynamic method, describes
power budgeting task as finding the highest allowed total
core power under temperature constraint. Some systems
may have other constraints such as total power supply
limit. But for dark silicon systems, which are extremely
temperature limited, we focus on the major problem of
thermal limits, and other constraints can be added with
minor modification if needed. For simplicity, let us first
consider the steady state case, and the power budgeting
problem can be formulated as the following optimization
problem

maximize ‖P‖1

subject to

{

card(P ) = na,

Tc � Tth,

(2)

where Tth ∈ R
n is the temperature rise threshold vector

containing the maximum allowed temperature rises from
the ambient temperature; card(P ) means the cardinality or
size of the vector P , which is defined as the number of
nonzero components in P . In our case, card(P ) = na means
there are na active cores.

4.1.2 Power budgeting by maximizing chip temperatures

However, the optimization problem above is a combina-
tional problem, which is very difficult to solve because of the
high computational complexity. To solve this problem with
low complexity, we find out that we can formulate an easier
alternative problem in which we treat core temperature
rise Tc as a resource which is limited by temperature rise
constraint Tth. In the new problem, we seek to allocate
power budgets to cores, such that the temperature resource
is fully used. In another word, we prefer the power budget
induced temperatures of all active cores to reach the thermal
constraint limits without violating it.

To show the two mentioned problems are equal, we have
the following proposition:
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Fig. 3. Average temperature versus power budget plot for all possible
active core distributions of two dark silicon systems. Both figures reveal
that higher average chip temperature leads to higher power budget.

Proposition 1. Providing a normally packaged IC chip, a higher
average temperature of the chip Tchip = 1

n
‖Tc‖1 + Tamb means

a higher total power of the chip ‖P‖1, where Tamb represents the
ambient temperature.

Proof. The proposition above is proved in the following
way. The typical structure of a packaged chip is shown
in Fig. 1(a). Since most heat generated in chip is con-
ducted through chip, thermal interface material (TIM), heat
spreader, heat sink, and finally dissipated to the air through
convection, we form the equivalent thermal resistor circuit
by connecting several equivalent thermal resistors in series
shown in Fig. 2. These thermal resistors represent thermal
resistance in the chip (Rchip), TIM (RTIM ), heat spreader
(Rspreader), heat sink (Rsink), and convection from heat sink
to the air (Rconv). The two thermal nodes at the two ends
of the thermal circuit denote average temperature of the
chip (Tchip = 1

n
‖Tc‖1 + Tamb) and average temperature

of the ambient air (Tamb). Because heat is only generated
at the chip and only dissipated into the air, we have an
equivalent current source with current value ‖P‖1 (the total
power of the chip) connected at Tchip to represent power
generation. Also, an equivalent voltage source is connected
at Tamb to stand for the ambient air temperature. Now if we
increase the average temperature of the chip, i.e., increase
the value of Tchip = 1

n
‖Tc‖1 + Tamb, the current flow ‖P‖1

in the thermal resistor circuit has to increase due to the fixed
ambient air temperature Tamb. In another word, a higher
average temperature of the chip Tchip = 1

n
‖Tc‖1 + Tamb

leads to a higher total power of the chip ‖P‖1, which proves
the proposition.

In addition to the proof, we also provide experimental
evidence to support this proposition. For the 9-core system
with 4 active cores, we plot the power budget versus av-
erage temperature for all possible active core distributions
(there are totally

(9
4

)

= 126 active core distributions) in
Fig. 3(a). We can see that the power budget increases mono-
tonically with the average temperature of the chip. We also
plot such figure for the 16-core system with 8 active cores
with totally

(16
8

)

= 12870 possible active core distributions
in Fig. 3(b). It also supports the proposition that higher
average chip temperature leads to higher power budget.
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We have shown that higher average temperature of the
chip means a higher total power, and the highest chip
temperature rise limited by the heat dissipation capability
is Tth. So, instead of directly maximizing total power ‖P‖1,
it is natural to maximize the average temperature of the
chip by making Tc as close to the temperature rise threshold
Tth as possible, which leads to the following optimization
problem:

minimize ‖Tth − Tc‖2

subject to

{

card(P ) = na,

Tc � Tth,

(3)

The optimization problem above is also a combinational
problem, which means finding its optimal solution is still
computationally expensive. Fortunately, such problem can
be solved efficiently by finding a sub-optimal solution using
greedy based method, as shown next.

4.2 Greedy based power budgeting in steady state

In Section 4.1, we have shown that we can allocate power
budget by making the average temperature of the chip as
high as possible to enhance performance. Such a strategy
is summarized as optimization problem (3). However, re-
maining as a combinational problem, finding the solution
of (3) is still very difficult. To be specific, for an n-core
system with na active cores, finding the optimal solution
of the optimization problem (3) requires solving

(

n
na

)

sub-
problems, where each sub-problem corresponds to minimiz-
ing ‖Tth−Tc‖2 with a possible active core distribution which
satisfies card(P ) = na. In this section, we use steady state
example to show that we can use a greedy based method
to efficiently find a sub-optimal solution of (3), which only
requires solving na sub-problems. Please note that GDP is
a dynamic power budgeting method, and we present its
behavior in steady state mainly for the purpose of clarity.

The steady state temperature rise of the chip can be
calculated using model (1) by neglecting the differential

term C
dT (t)
dt

, leading to

Tc = BTG−1BP. (4)

Let A = BTG−1B ∈ R
m×m to simplify notation, we plug

(4) into the optimization problem (3) and get

minimize ‖Tth −AP‖2

subject to

{

card(P ) = na,

AP � Tth.

(5)

Finding the optimal solution of such optimization prob-
lem requires brute force search of all possible combinations
of non-zero value positions in P which satisfies card(P ) =
na. For each combination, we can transform (5) into a
constrained norm approximation problem. Although each
constrained norm approximation problem can be solved
efficiently, the combination number grows exponentially
with the core and active core number, which makes solv-
ing (5) in traditional way impractical, as shown later in
experiments. Another possible way of solving such prob-
lem is to eliminate the cardinality constraint by replacing
the cost function by an l1-norm regularized cost function
‖AP − Tth‖2 + γ‖P‖1. By changing the value of γ, we can

(a) Optimal. (b) Sub-optimal.

Fig. 4. Optimal and sub-optimal active core distribution comparison
using a 25-core system with 12 cores active. Cores in white are active
and cores in black are off.

tune the sparsity in the solution P , and it is possible to find
the one with card(P ) = na if we find the suitable γ [35].
Such method is faster than the traditional combination
solution, however, it is still slow since a lot of values of
γ have to be tested before we find the final solution.

As discussed above, finding the optimal solution has
high complexity which means it is not suitable for
multi/many-core system with large number of cores. It
is also noticed that for such systems, finding the optimal
solution is not necessary. This is due to the fact that when
core number is large, each core takes relatively small area, so
there exist many sub-optimal active core distributions which
only have slightly larger objective values (measured by cost
function) than that of the optimal solution. For example,
consider a 25-core system with 12 cores active. The optimal
solution of such system is shown in Fig. 4(a), and one sub-
optimal solution is shown in Fig. 4(b). Please note that white
cores are active and black cores are off. We can see that the
sub-optimal solution has a dark core cluster at one corner,
but only takes a small chip area, meaning the sub-optimal
solution has only slightly lower power budget than that of
the optimal solution. This is also verified in our experiments
by comparing the optimal power budget and sub-optimal
power budget, as shown later.

Since a sub-optimal solution may have only slightly
worse performance compared with the optimal solution,
instead of finding the optimal solution using combinational
method with high complexity, we seek for a fast method to
find a sub-optimal solution.

For an n-core system with na active cores, the basic idea
of finding such sub-optimal solution is described as follows:
we first find the optimal solution for only one active core.
Next, we fix the first active core position determined by the
first step, and find the optimal solution of two cores, with
the second active core position determined. Please note that
although we say “optimal” in the second step, such solution
is only the optimal solution with the first active core fixed
at the position determined by the first step, but not the true
optimal solution for general two active cores. Similarly, in
the (i+1)-th step, we look for the optimal solution for i+1
active cores with the positions of i active cores found in all
previous steps remain fixed. By proceeding such strategy
for na steps, we can arrive at a sub-optimal solution for na

active cores.

Now let us explain the steps in details.
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Fig. 5. Illustration of finding the first active core in the greedy based
algorithm. For simplicity, only two cores (the j-th core and the k-th core)
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4.2.1 Find the solution for one active core

For the first step, since we only need to find the optimal
solution for one active core, the optimization problem is

minimize ‖Tth −AP‖2

subject to

{

card(P ) = 1,

AP � Tth.

(6)

We normalize columns of A to simplify discussions (please
note we can reverse such operation on solution P to get
the original solution), i.e., for A = [a1, a2, . . . , an], we make
‖a1‖2 = ‖a2‖2 = · · · = ‖an‖2 = 1 without changing their
directions.

In order to solve such problem, we first determine the
optimal position for the single active core. Since there are n
possible cores to be chosen as the first active core, we have
to find a way to determine if one core is superior to the other
one, measured by the cost function in (6).

One example of comparing two possible active core
positions (we take the j-th core and k-th core as example)
is shown in Fig. 5. Due to limitation of graph drawing, only
temperature rises (denoted by T1 and T2 axes in the figure)
at two positions on the chip are shown in the figure. By
turning on the j-th core only, the corresponding temperature
rise of the chip is ajpj (since all other cores are turned off
with no power), where pj is the j-th element in P which
should be determined by solving (6). Assume pj is correctly
computed, then the T1 component (chip temperature rise at
position 1) of ajpj will just be the same as the threshold, and
the T2 component (chip temperature rise at position 2) of
ajpj will be lower than threshold. Instead, by turning on the
k-th core only, the corresponding solved power value pk will
heat the chip to akpk, with its T1 component being lower
than threshold and its T2 component just being equal to the
threshold. Although both cases have temperature rise at one
position reaching the threshold and temperature rise at the
other position lower than threshold, we prefer to turn on the
j-th core, because its cost ‖Tth−ajpj‖2 (length of ajpj−Tth

in Fig. 5) in the optimization problem (6) is smaller than the
cost ‖Tth−akpk‖2 of turning on the k-th core, as observed in
Fig. 5. The physical meaning is: by turning on the j-th core,
the overall system temperature is closer to the temperature
threshold, thus higher than that of turning on the k-th core.

Actually, we do not even need to solve the corresponding

power (pj and pk in this example) to compare two possible
active cores. In Fig. 5, we can see that the j-th core is
preferred over the k-th core, because aj is closer to Tth,
i.e., the angle between aj and Tth is smaller (please note
that all columns of A are normalized). As a result, in order
to determine the optimal active core numerically, a good
indicator to approximately measure such angle with low
computing cost is the inner product of a column in A and
Tth. In another word, we can simply compute the inner
products of all columns of A and Tth, i.e., 〈aj , Tth〉 for
j = 1, 2, . . . , n, and pick the core with the largest inner
product as the first active core.

Now, with the first active core position fixed, we can
compute the power budget of that core. Assume the j-th
core is picked, then optimization problem in (6) changes to

minimize ‖Tth − ajpj‖2

subject to ajpj � Tth.
(7)

This optimization problem can be equivalently transformed
into a quadratic programming (QP) problem

minimize p2ja
T
j aj − 2pjT

T
thaj + TT

thTth

subject to ajpj � Tth,
(8)

which is then solved efficiently by calling the standard QP
solving routines for the power budget pj . Please note that if
the total active core number is one (na = 1), then pj is the
final power budget. Otherwise, pj is just a temporary value
and will be updated in the subsequent procedures as shown
in Section 4.2.2 and Section 4.2.3.

4.2.2 Find the solution for two active cores

After finding the position and power budget for only one
active core, we can proceed to the second step: find the
solution for two active cores. As a greedy based algorithm,
we fix the first active core position found in the previous
step, and look for the second core position only. First,
we subtract the first active core induced temperature rise
from Tth to get the remaining temperature rise threshold
as Trm = Tth − ajpj , assuming the j-th core is the active
core already chosen in the first step. The physical meaning
of Trm is interpreted as: elements in Trm with large values
mean that the first active core has small temperature impact
on these positions, and vice versa. As a result, in order to
find the position of the greedy optimal second active core,
we need to find the core which complements the impact of
the first active core best. So we test the other n − 1 cores
one by one through computing the inner products of its
corresponding column in A and Trm. The core with the
largest inner product is chosen as the second active core.

Next, we need to compute the new power budget with
the second active core position added. Assume the k-th core
is picked as the second active core, the power budget can be
found by solving the following optimization problem:

minimize ‖Tth −
[

aj ak
]

[

pj
pk

]

‖2

subject to
[

aj ak
]

[

pj
pk

]

� Tth,

(9)

by transforming it into the equivalent QP problem similar
to (8). Please note that Tth is used here as the temperature
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threshold for power budget computing, whereas Trm is only
employed to locate the new active core position.

4.2.3 The general iterative steps

Previously, we have shown the steps to find the position
and power budget for the first two active cores. Now, we
extend the previously introduced steps into the general
iterative steps which are used to find the distribution of
the na active cores. Assume we have already found i active
cores. The corresponding i columns of A are collected into
matrix Ai ∈ R

i×n, and power budget of these i cores
are expressed as vector Pi ∈ R

i×1. Then, we can form
the following optimization problem to describe the power
budgeting problem with these i active cores:

minimize ‖Tth −AiPi‖2

subject to AiPi � Tth.
(10)

The power budget Pi is readily solved by changing (10) into
the equivalent QP problem as

minimize PT
i AT

i AiPi − 2TT
thAiPi + TT

thTth

subject to AiPi � Tth.
(11)

In order to find the position of the (i + 1)-th core, we
subtract the temperature rise caused by power budget of i
active cores from Tth, and obtain Trm = Tth − AiPi. Next,
in order to check which core left has the greatest potential in
complementing the impact of the existing i active cores, we
compute the inner products of the remaining columns of A
and Trm. The core with the largest inner product is picked.
The position of the newly picked core is recorded and the
corresponding column in A is added into Ai to form the
new matrix Ai+1.

Then, the new power budget with i+ 1 active cores can
be computed by solving the i+1 version of (11). If i+1 = na,
we stop the iteration and output the positions of all na active
cores and the computed power budget. If i + 1 < na, we
continue this iteration to find the (i+ 2)-th active core.

4.3 Greedy based power budgeting considering tran-

sient effects

The power budgeting method introduced in Section 4.2 suits
steady state condition and serves mostly for illustration of
the basic ideas of GDP. It may work just fine on the aspect
of reliability if the computed steady state power budget is
followed strictly during the power management process.
However, it still suffers from two issues, which are also
shared by the existing power budgeting methods like TDP
and TSP.

The first issue is the inability to correct or ease bad or
false power management decisions which violate the steady
state power budget. If the previous temperature threshold
is already violated at current time because of previous bad
or false power management, even performing correct power
management following the steady state power budget may
worsen the reliability. Obviously, the suitable way of dealing
with such situation is to use a different power budget which
is lower than the steady state one, or even shut down
some/all cores if necessary.

The second issue is that the steady state power budget
is over pessimistic for most of the time in real world, and

Power
Budget

P

T

t+ht

time

time

Tth

Tc(t+h)

Tc(t)

h

Fig. 6. Demonstration of how the impact of current temperature (at time
t in the figure) is incorporated into the power budgeting method. The
dashed lines represent power budget and the budget caused tempera-
ture rise of a core (assume this core is already chosen to be active by
GDP).

as a result, performance will be sacrificed. This problem is
significant when the chip previously ran at low performance
mode, and suddenly requires high performance. Because
the temperature of the chip is way below the emergency
temperature at current time, the system is able to consume
much more power than the steady state power budget
without violating the temperature constraint.

In real world, it is possible that power management
makes false decisions occasionally, and it is frequent that
chip switches between low performance mode and high per-
formance mode, so we develop a power budgeting method
by considering current transient thermal/power behaviors
as follows.

First, we use Fig. 6 to illustrate how GDP takes the cur-
rent temperature impacts into account for power budgeting
process. Note that only one active core’s temperature and
power budget are shown in the illustration for simplicity. At
current time t, temperature rise of the core is Tc(t), which
is below temperature rise threshold Tth. GDP needs to find
the power budget P (shown in dashed power line) for the
future time duration h, such that by applying the budget to
the core, temperature rise at t + h (i.e., Tc(t + h)) should
just reach temperature rise threshold Tth without violating
it (shown in dashed temperature line).

From the previous illustration, we notice that the basic
problem in dynamic power budgeting is to represent tem-
perature rise Tc(t + h) using the input power P and initial
temperature rise T (t). Once the formulation of Tc(t + h) is
available, we can put it into the basic optimization problem
(3), and get the sub-optimal P using the similar greedy
based method presented in Section 4.2.

However, representing Tc(t+h) using P and T (t) is not
straightforward. This is because time domain convolution
is required to express Tc(t + h) explicitly, and practically,
Euler method [37] and Runge-Kutta method [36] are used
to compute Tc(t + h) numerically instead of formulating
the explicit Tc(t+ h). Fortunately, we are able to obtain the
closed-form expression of Tc(t+h) with P and T (t), by taking
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advantage of the fact that P is constant for the future time
duration h in power budgeting problem, as presented next.

It is well known that thermal model as a linear system
in (1) has the following solution

T (t+ h) = e−hC−1GT (t)

+

∫ t+h

t

e−(t+h−τ)C−1GC−1BP (τ) dτ.
(12)

Because the power budget is constant for the future power
budgeting cycle duration h (i.e., from time t to t + h), we
can simplify (12) into

T (t+ h) = e−hC−1GT (t)

+

∫ h

0
e−(h−τ)C−1GC−1B dτP.

(13)

Let us denote

M(h) = e−hC−1G, N(h) =

∫ h

0
e−(h−τ)C−1GC−1B dτ,

then (13) can be written as

T (t+ h) = M(h)T (t) +N(h)P. (14)

Please note that M(h) ∈ R
m×m and N(h) ∈ R

m×n are
constant matrices which can be computed offline for a given
time step h.

M(h)T (t) and N(h)P are the zero-input response and
zero-state response of the linear system in (1), respec-
tively, and there are many easy ways to compute M(h)
and N(h) in both frequency domain and time domain.
Here we only briefly show a time domain method pre-
sented in [40]. Let us denote M(h) = [M1,M2, . . . ,Mm],
N(h) = [N1, N2, . . . , Nn], T (0) = [T1, T2, . . . , Tm]T , and
P = [p1, p2, . . . , pn]

T , where Mi and Ni represent the i-th
columns of M(h) and N(h), Ti and pi represent the i-th
elements of T (0) and P , respectively. With linear system
theory, we have Mi = T (h), if we let P = [0, 0, . . . , 0]T ,
Ti = 1, and Tj = 0 for all j 6= i. As a result, we can get
the i-th column of M(h) by computing T (h) using standard
numerical integration of (1) with only the i-th element of
initial state T (0) set to be one. Similarly, we have Ni = T (h),
if we let T (0) = [0, 0, . . . , 0]T , pi = 1, and pj = 0 for all
j 6= i. In another word, the i-th column of N(h) can be
obtained by computing T (h) using numerical integration of
(1) with only the i-th element of power P set to be one.

Finally, we are able to express Tc(t+h) using P and T (t)
as

Tc(t+h) = BTT (t+h) = BTM(h)T (t)+BTN(h)P. (15)

The cost function of the steady state power budgeting
problem in (5) will be changed by using the new Tc(t + h)
for transient case as

‖Tth −BTM(h)T (t)−BTN(h)P‖2. (16)

In order to simplify notation, we denote a new vector

T̄th = Tth −BTM(h)T (t), (17)

where T̄th has similar meaning of Tth in steady state case,
and it also accounts for the transient thermal effects, i.e.,
current temperature’s impact on power budget. Also, we

denote a new matrix

Ā = BTN(h), (18)

which works similarly as matrix A in steady state case, but
accounts for transient thermal effect. The power budgeting
optimization problem for transient case is updated as

minimize ‖T̄th − ĀP‖2

subject to

{

card(P ) = na,

ĀP � T̄th.

(19)

Now dynamic GDP can be applied by following the steps
in steady state GDP presented in Section 4.2, just with (5)
replaced by (19).

4.4 The GDP algorithm

Now, we summarize the GDP algorithm as Algorithm 1.

Algorithm 1 The GDP algorithm

Input: n, na, A, Tth (for transient, replace A and Tth with
Ā and T̄th, respectively)

Output: power budget vector P
1: Trm = Tth, A0 = [ ]
2: for i = 1 : na do
3: idx(i) = 1
4: for j = 2 : n do
5: if 〈aj , Trm〉 > 〈aidx(i), Trm〉 then
6: idx(i) = j
7: end if
8: end for
9: Ai = [Ai−1, aidx(i)]

10: Compute Pi by solving the QP problem (11)
11: Trm = Tth −AiPi

12: end for
13: return P = Pna

Since GDP algorithm is elegant and concise, it can be
easily integrated with many thermal modeling tools. Let us
take the popular thermal modeling tool HotSpot [36], [38]
as example. First, HotSpot will build the thermal model
matrices G, C , and B. Then, GDP in Algorithm 1 can
be easily implemented with the A matrix (or Ā and T̄th

matrices) formulated using the thermal model matrices.

4.5 Overhead reduction of the Greedy based power

budgeting

Computing overhead is important for dynamic power bud-
geting. Although GDP already reduces the non-polynomial
time complexity of original combination problem to polyno-
mial time complexity, the overhead of GDP still grows as the
active core number and core number increase. Specifically,
for an n-core system with na active cores, GDP needs
na iterations to locate the positions of all active cores.
In each iteration, finding the max inner product 〈aj , Trm〉
takes approximately n2 operations, and computing the new
power budget for the next iteration takes approximately
n3
a operations. As a result, the time complexity of GDP is

O(n2na + na
4).

Please note that large computing overhead only appears
when n and na are large. But since GDP is computed only
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on one of the na active cores, even such large overhead does
not have significant impact on the total system throughput
as shown in experiments. However, large overhead may still
result in significant power budgeting delay. In this section,
we propose two methods to relieve such overhead problem:
one method is called reverse GDP for systems with large
active core ratio, and another method is called parallel GDP
for systems with large core number.

4.5.1 Reverse GDP to locate non-active cores

For a system with large active core ratio, GDP will locate the
active cores one by one with a lot of iterations. For example,
there will be 60 iterations for GDP to find the power budget
for a 64-core system with 60 active cores. For such condition,
we can actually locate the non-active cores instead of the
active cores, in order to reduce the computing overhead. We
call this method which aims to find non-active core positions
rather than active core positions as reverse GDP.

The main idea of reverse GDP is to find the locations of
non-active cores rather than active cores, in a greedy manner
similar to the standard GDP. The steps of reverse GDP for
one iteration are given as follows: First, calculate the power
budget using the QP optimization (11), by assuming all
cores are active except for the already located non-active
cores in previous iterations (for initiation, simply assume
all cores are active). Second, among all active cores, find
the one (assume the j-th core) with smallest ‖ajpj‖1. This
core (the j-th core) is the newly located non-active core in
this iteration. At last, calculate the power budget for new
distribution and go to the second step to start the next
iteration until sufficient non-active cores are located.

Reverse GDP has lower computing overhead when the
active core ratio is high. For the same 64-core system with 60
active cores, reverse GDP only needs 4 iterations compared
to 60 iterations of standard GDP.

4.5.2 Parallel GDP for parallel computing

The computing overhead of GDP also grows with core
number. For the system with a large number of cores, we
divide the original system into smaller sub-systems, and
find the active core positions for each sub-system in parallel
to reduce the computing overhead. We call this method as
parallel GDP.

The main idea of parallel GDP is to divide the origi-
nal system into several small sub-systems with moderate
number of cores, such that the active cores can be located
for each sub-system with standard GDP process in par-
allel. Since we only need to find the sub-optimal active
core locations, the boundaries of each sub-system can be
treated as adiabatic with tolerable error loss. The active
core number in each sub-system can be set manually by
assuming uniform active core distribution or by experience,
as long as the total active core number is met. After all
active core positions are located, we compute the power
budget using the original system model (not the sub-system
model anymore). As a result, the impact of the neighbor sub-
systems is also accurately considered in parallel GDP. Please
note that although the final power budget computing step
is not a parallel process, it is still very fast because there is
no iteration in this step.

Parallel GDP enables performing GDP even on a system
with large number of cores. For example, if we apply paral-
lel GDP to a 64-core system by dividing the original system
into four 16-core sub-systems, the computing overhead is
similar to applying standard GDP to a 16-core system.

4.6 Guidance on estimating the optimality lower-bound

of GDP in steady state

Since GDP provides sub-optimal solution, one natural ques-
tion is how optimal is the GDP solution. However, deriving
a theoretical optimality lower-bound for GDP is extremely
difficult because the optimality of GDP differs with system
core number, active core number, and the system thermal
model (A matrix, etc.). Even checking the optimality of
GDP is challenging because of the inability to obtain the
optimal solution for just moderate sized multi-core systems:
the computing complexity is so high that we cannot get the
optimal solution for the 25-core system with 12 active cores
even after over 12 hours’ computing.

However, we still give a guidance on estimating the
lower-bound of GDP in steady state. This guidance is based
on the observation that the optimality of GDP increases with
system core number n, simply because the active core area
mismatch ratio between the GDP solution and the optimal
solution is smaller with larger system core number n. For
example, finding even one wrong active core position for
a 9-core system can make a relatively large difference in
power budget. However, finding even several wrong active
core positions in a 1000-core system is not a big deal in
power budget. As a result, we can seek for the largest differ-
ence between the GDP solution and the optimal solution in
systems with small number of cores. Such difference could
be the steady state optimality lower-bound for systems
with different number of cores sharing the same package
structure.

To be specific, for quad-core (2×2) system in steady state,
the active core distribution given by GDP is absolutely opti-
mal for any active core numbers. For the 3× 3 core system,
not all GDP solutions are optimal anymore because GDP is
greedy based. Specifically, GDP solutions are non-optimal
for active core number 2, 3, 4, as can be easily observed in
Fig. 7. By comparing the steady state power budgets given
by GDP and the optimal method, we find the 4 active core
case has the largest power budget difference (1.5%). Thus,
we can take such difference as the optimality lower-bound
of steady state GDP, which is supported experimentally by
the data in Table 1.

4.7 Consideration of practical situation

The GDP method presented previously is designed with
ideal assumptions. For practical situations, following such
ideal GDP’s suggestions may not lead to optimal perfor-
mance.

One important example is that GDP determines ac-
tive core positions every time it is activated. However, in
practical situations, task migrations happen when active
core position changes, with migration overheads. If task
migration operation is performed too often, the aggregate
overhead may grow too significant, making the game not
worth the candle. In addition, a related practical situation is
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(a) The first step with po-
sition and power budget of
the first active core deter-
mined.

(b) The second step with po-
sitions and power budgets
of 2 active cores determined.

(c) The third step with posi-
tions and power budgets of
3 active cores determined.

(d) The fourth step with po-
sitions and power budgets
of 4 active cores determined.

Fig. 7. Temperature distributions of the 9-core system with the power
budget given by GDP’s first four greedy steps.

that we may prefer some communication extensive tasks to
be performed in some adjacent cores, even though it leads to
active core clusters with lower power budget (this is exactly
what ideal GDP tries to avoid).

In order to take care of the aforementioned two practical
situations, a forced active core map indicating which cores
must be active can be given before the first iteration, thanks
to GDP’s greedy based iteration structure. For example, if
migration overhead is significant for certain task, its current
core should be added to the forced active core map, thus
heavy migration cost can be avoided. If several tasks need
to be performed in adjacent cores due to communication or
other concerns, these adjacent cores should also be added to
the forced active core map.

With the forced active core map provided (assume i
cores are forced active), GDP will simply find the power
budget Pi for these i active cores with their forced positions
using (10) (or its dynamic version), and continue to find the
remaining active cores (starting from the (i + 1)-th active
core) following normal GDP iterations.

5 EXPERIMENTAL RESULTS

In this section, we show the experimental results to verify
the proposed power budgeting method and analyze its per-
formance. All data are collected on a PC with Intel I5 4200U
CPU and 4 GB memory. In the experiment, multi/many-
core systems with the number of cores ranging from 9
to 100 are used, and each system is tested with different
dark silicon ratios. The thermal models of these systems
are extracted from HotSpot [36], [38] with default package

and chip parameters. For all test cases, we set the ambient
temperature as 20 ◦C, and the temperature constraint as
80 ◦C (so the temperature rise constraint is 60 ◦C).

5.1 Effectiveness and performance tests for steady

state cases

In order to test the effectiveness and performance of the
new method, we first test it using a system with small core
number (9 cores) and show its steady state behavior step in
step. Please note that we show steps of the 9-core system
because it is easier for the readers to verify the correctness
of GDP using a system with small core number.

Now we demonstrate how GDP decides which cores
to be active in a greedy manner for 4 active cores. For
step one, GDP looks for the first active core position. This
step is pretty easy even for human, as we can readily
pick the center core, because its position has the best heat
dissipation capability. GDP, unlike human who uses instinct
and experience, picks the core with the largest inner prod-
uct 〈aj , Tth〉, which is exactly the center core. Then, GDP
computes the power budget for such one active core case.
We plot the steady state temperature distribution caused by
the computed power budget in Fig. 7(a). As expected, the
only active core at the center has a temperature of 80 ◦C,
which is just the provided thermal constraint value. Next,
GDP searches for the second active core position with the
first active core position fixed. Although all four cores at
the corners can be chosen due to symmetry, the upper left
one is picked simply because computer prefers the first. The
updated power budget also leads to 80 ◦C for the two active
cores shown in Fig. 7(b), as expected. For the third and
fourth active cores, GDP locates their positions to be lower
right corner and upper right corner, with power budget
resulted temperature distributions shown in Fig. 7(c) and
Fig. 7(d), respectively.

In addition to the case shown above, we also tested
many other systems with different number of cores and
active cores. The final power budget resulted temperature
distributions of these cases are shown in Fig. 8. For all cases,
GDP provides correct greedy based sub-optimal results.

Next, we test the power budget quality provided by
GDP. The results are collected in Table 1. For comparison, we
compute the optimal power budget by a brutal force search
of all active core combinations, and the power budget given
by the state-of-the-art method TSP [18]. Please note that
the brute force search guarantees to find the global optimal
solution but suffers from high computational complexity,
and it is unable to deliver the results starting from the 25-
core system with 12 active cores case, even after over 12
hours’ computing. Although GDP only finds a sub-optimal
solution, we find that the GDP computed power budget is
very close to the global optimal one.

5.2 Effectiveness and performance tests for transient

cases

GDP is a dynamic based method, meaning it is able to
provide power budget adapting to transient running state
of the multi/many-core dark silicon system.
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(a) 9-core system with 4 ac-
tive cores.

(b) 16-core system with 8 ac-
tive cores.

(c) 25-core system with 12
active cores.

(d) 25-core system with 13
active cores.

Fig. 8. Temperature distributions of systems with different core number
and active core number.

TABLE 1
Steady state power budget comparison. “GDP”, “Optimal”, and “TSP”
stand for power budgets given by GDP method, optimal solution with

brute force search, and TSP method, respectively.

Core Active GDP Optimal TSP
# # (W) (W) (W)

9
2 95.0 96.4 89.9
4 153.8 156.2 143.8
7 202.8 203.6 196.5

16
3 130.3 131.8 114.8
8 227.0 227.9 209.5

13 269.0 269.8 261.8

25
5 114.2 114.9 100.2

12 192.3 NA 173.9
20 232.5 233.1 223.6

36
8 131.1 110.5

18 202.3 NA 179.6
28 236.8 224.7

64
12 122.7 97.4
32 205.5 NA 178.5
52 237.3 227.1

100
16 124.1 103.1
52 216.5 NA 183.4
76 235.4 220.5

GDP mainly focuses on computing the power budget
dynamically for the multi/many-core dark silicon system.
By using the power budget and active core distribution
suggestion provided by GDP, many different thermal man-
agement methods can be designed and optimized, which
is not the main focus of this work. In order to test the dy-
namic behavior of GDP for transient cases, the same simple
task scheduling and dynamic voltage and frequency scaling
(DVFS) strategy is used for all methods: a power match-
ing determines task scheduling and DVFS is performed
when the task on the core consumes more power than the
provided power budget. Please note that task scheduling
and DVFS are used here only on the purpose of showing
power budgeting performance. Advanced task scheduling
and DVFS methods may further boost performance but is
out of scope of this work.

In the experiment, GDP is set to compute power bud-
get dynamically for every 10 seconds (h = 10). State-of-
the-art power budgeting method TSP [18] and neighbor-
aware multi-core dynamic thermal management method
NADTM [14] are used for comparison. Two SPEC bench-
mark applications are running on each active core by round-
robin scheduling, with time slice set to be 50ms [41]. At
initiation, the applications are randomly assigned to the
active cores. The computing overheads of all methods are
considered in the experiments as throughput deduction and
management latency. The power consumption is obtained
by the power estimator Wattch [42]. There are 18 V/F
levels (from 0.32V@140MHz to 1V@2GHz) for DVFS in our
experiment, with DVFS action overhead set to be 10µs by
following the settings in [43]. The task migration overhead
is set as 10ms according to [44].

We first verify the effectiveness of TSP and GDP, i.e., we
check whether the temperature will be constrained below
the threshold if the given power budget is followed. We
plot the transient temperature results with GDP and TSP
in Fig. 9(a) and Fig. 9(b), respectively. Because TSP is a
static power budgeting method, we have to activate cores
according to the worst case distribution to test if the system
temperature is properly controlled with TSP power budget.
For GDP, the cores are activated according to the sub-
optimal distribution computed by the greedy based algo-
rithm in GDP. From the figure, we can see that both power
budgets provided by TSP and GDP are able to constrain
the temperatures of all active cores below the user defined
thermal threshold (80 ◦C in our test case) with the simple
task scheduling and DVFS.2 In Fig. 9(a), core temperature
switches between high temperature and low temperature
because GDP may switch active core positions dynamically.

Next, we compare GDP with the neighbor-aware dy-
namic thermal management method NADTM [14], because
both methods take neighbor core’s temperature into ac-
count. The transient temperature results with NADTM is
shown in Fig. 9(c). We see that NADTM is not able to
constrain the core temperature below the given thermal

2. In the TSP test case, temperatures of the active cores will be
significantly lower than threshold if active core distribution other than
the worst case one is used. This is because TSP is a static power
budgeting method, which has to provide over pessimistic (i.e., much
lower than real) power budget to guarantee thermal safety of the
system in all conditions including the worst one.
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(a) Transient temperatures of the system
with power budget provided by GDP. The
cores are activated according to the sub-
optimal distribution given by GDP.
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(b) Transient temperatures of the system
with power budget provided by TSP. We
activate cores according to the worst case
distribution given by TSP to verify the
effectiveness of TSP.
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(c) Transient temperatures of the system
with NADTM. Temperature violation oc-
curs since NADTM is not designed for
dark silicon system.

Fig. 9. Transient temperatures of the 9-core system with simple task scheduling and DVFS following power budgets provided by TDP and TSP, and
with dynamic thermal management method NADTM. Each line represents temperature of one core of the system. The temperature constraint is
set as 80 ◦C for all methods. The label “core ij” denotes the core located at the i-th row and j-th column in the 9-core system. The spikes in the
transient temperature curves are due to the power variation between two temperature management actions, which can be reduced by using more
frequent DVFS actions.

threshold for the dark silicon system. NADTM fails because
it is not designed considering dark silicon properties. We
provide the detailed discussion as follows.

The basic idea of NADTM is to use a linear model
with three inputs (own current temperature, own increment
factor, and neighbor increment factor) and three parameters3

to predict the core’s own temperature.

The major problem of using NADTM in dark silicon sys-
tem is that there are only three inputs and three parameters
(specifically, α, β, γ in NADTM paper) in temperature pre-
diction, and only one input and one parameter (γ) among
them is used to consider all four neighbor cores’ impact.
This is far from sufficient to consider the complex dark
silicon temperature behaviors. To be specific, for dark silicon
system, the neighbor cores could be inactive state or off
state, and they impact the neighbor cores quite differently
when in different state. If we put all neighbor cores’ on-
off combinations and different benchmarks into the training
process, we end up with a large number of training samples
with large diversity. For this overdetermined problem, the
least square method will find a solution α, β, γ which works
best for all samples. However, because of the large number
and large diversity of the samples, the least square solution
even has large error for the training samples. In another
word, it is impractical to use a model with only three
parameters to predict the complex temperature behavior of
the dark silicon multi-core systems.

Our experiment verifies this observation. Although
working properly for traditional multi-core systems,
NADTM is unable to make thermal prediction accurately
by considering the impact of neighbor cores for dark silicon
systems. As a result, NADTM may lead to temperature
violation which puts the chip in danger.

We have shown that the system is thermally safe by

3. The three parameters are trained using least-square estimation in
NADTM algorithm.

following the power budgets given by both GDP and TSP,
now we compare the performance of the two methods
to see which one gives higher power budget and system
performance. The power budget and system performance
results are collected in Table 2. Except for showing TSP
performance with the worst case active core distribution
(denoted as “ Worst TSP” in Table 2), we also demonstrate
the performance given by TSP averaged from 10 random
active core distributions (denoted as “Random TSP” in
Table 2). For the transient case, GDP also provides higher
power budget and better system performance than TSP,
because GDP looks for active core distributions dynamically
but TSP only finds the worst case one to ensure absolute
thermal safety (for “Worst TSP”) or follows a given ac-
tive core distribution (for “Random TSP”). Moreover, the
dynamic power budget provided by GDP is higher than
its steady state power budget for the same multi/many-
core dark silicon system by comparing data from Table 1
and Table 2. This is because GDP automatically provides
performance boost by letting the dynamic power budget to
be higher than steady state power budget when temperature
is lower than threshold. This property will be shown in
details later.

It is also interesting to see how GDP automatically pro-
vides “performance boost” when previous temperature is
relatively low. We use the 9-core system with 4 cores active
as the demonstration case, and provide test input power
to its active cores. As shown in Fig. 10(a), the test input
power contains two non-zero parts. The first part is from
1 s to 25 s. In this part, a constant power, which just equals
to the steady state power budget, is applied to the active
cores, in order to see how power budget changes when
system temperature changes from ambient to steady state
value. The second part lasts from 60 s to 90 s. Different from
the first part, at the beginning second of the second part
(from 60 s to 61 s), we apply an input power which equals to
the dynamic power budget provided by GDP (much higher
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TABLE 2
Dynamic power budgeting and system performance (in MIPS) results comparison. “Budget” is short for power budget with the unit watt. Since

GDP provides dynamic budget, the averaged value is provided here. For parallel GDP, the 64-core system and 100-core system are divided into
four 16-core systems and four 25-core systems, respectively. “ Worst TSP” denotes TSP performance with the worst case active core distribution,

and “Random TSP” denotes TSP performance averaged from 10 random active core distributions.

Core Active GDP Reverse GDP Parallel GDP Worst TSP Random TSP
# # Budget MIPS Budget MIPS Budget MIPS Budget MIPS Budget MIPS

9
2 100.8 180.0 100.2 179.7 89.9 173.3 94.9 176.4
4 158.3 209.2 157.1 208.7 NA NA 143.8 202.6 150.4 205.7
7 206.6 228.7 207.8 229.1 196.5 224.9 200.5 226.4

16
3 136.9 199.4 137.5 199.6 114.8 188.0 127.2 194.5
8 235.2 238.8 236.4 239.2 NA NA 209.5 229.7 220.7 233.8

13 273.2 251.0 274.6 251.4 261.8 247.4 264.9 248.4

25
5 118.2 189.8 118.5 190.0 100.2 179.7 111.4 186.1

12 194.8 224.2 191.7 223.0 NA NA 173.9 215.9 184.7 220.3
20 237.8 239.6 237.6 239.6 223.6 234.8 229.4 236.8

36
8 134.9 198.4 135.6 198.7 110.5 185.6 127.3 194.6

18 209.3 229.7 205.4 228.2 NA NA 179.6 218.2 195.8 224.6
28 242.6 241.2 240.4 240.5 224.7 235.2 232.4 237.8

64
12 128.2 195.0 128.9 195.4 124.6 193.2 97.4 178.0 118.4 189.9
32 208.9 229.5 207.4 229.0 203.4 227.5 178.5 217.8 197.7 225.3
52 239.2 240.1 238.5 239.9 238.2 239.8 227.1 236.0 233.9 238.3

100
16 128.4 195.1 129.3 195.6 121.5 191.6 103.1 181.4 114.6 187.9
52 219.6 233.4 215.4 231.9 213.6 231.2 183.4 219.8 205.7 228.3
76 240.1 240.4 239.5 240.2 239.3 240.1 220.5 233.7 232.0 237.7

than steady state power budget) to cores. This power is used
to verify the accuracy of the dynamic power budget given
by GDP. The input power, the resulted temperature, and the
power budget provided dynamically by GDP for each future
second (h = 1) of an active core are shown in Fig. 10. 4

From the figure, we can see that at 0 s, since the system’s
temperature is at ambient 20 ◦C, the power budget for the
future second is around 51W for this core, which is much
higher than the steady state power budget around 39W.
It means system’s current temperature has huge impact
on power budget, and a performance boost with maximum
power consumption of 51W can be executed for the future
second without violating thermal constraint. Because the
steady state power budget is constantly applied from 1 s to
25 s, temperature gradually rises to temperature constraint
80 ◦C. At the same time, power budget given by GDP
decreases from 51W to the steady state power budget 39W,
indicating the steady state power budget given by GDP is
accurate.

Then, from 25 s to 60 s, the input power is zero, so the
system cools down from 80 ◦C to ambient temperature.
During this time, power budget increases from steady state
value 39W to 51W for this core, as expected.

Next, input power equals to power budget given by GDP
at 60 s (around 51W) is applied from 60 s to 61 s, to simulate
a performance boost consuming full power budget given by
GDP. Because of this input power, temperature of the core
rises fast and just reaches temperature threshold 80 ◦C at

4. Please note that in this example, the input power does not relate
to the calculated power budget. Input power is only used to generate
a time varying temperature to see how power budget changes with
current temperature. In addition, power budget is directly related to
system’s current temperature, but is not directly related to input power.

61 s. This matches the expected results illustrated in Fig. 6,
meaning the dynamic power budget given by GDP is both
accurate and safe.

Finally, we apply input power equals to steady state
power budget to active cores from 61 s to 90 s. It is inter-
esting to see that temperature of the core drops from 80 ◦C
to around 68 ◦C at first from 61 s to 62 s, then gradually
rises back to 80 ◦C from 62 s to 90 s. This phenomenon is
explained as follows. Although cores of the system have
already reached threshold 80 ◦C at 61 s, system’s package
temperature is still much lower than its steady state value.
Because of the relatively cool package, input power equals
to steady state power budget (39W) is too low to support
the core temperature to stay at 80 ◦C. Actually, the power
budget given by GDP at 61 s is around 48W, which is able
to consider the package effect and keep the core temperature
to be 80 ◦C at 62 s.

Readers may also notice that for the core temperature’s
rising process (from 1 s to 25 s) and dropping process (from
25 s to 60 s), power budget is different for the same temper-
ature. To be more specific, for the same core temperature,
rising process has a higher power budget than that of the
dropping process. This is also due to the fact that package
temperature changes much slower than core temperature,
and will cool the core down in rising process and heat the
core up in dropping process.

In summary, GDP shows that transient thermal effects
from both chip and package have huge impact on power
budget. By following the dynamic power budget given by
GDP, system performance can be boosted with guaranteed
thermal safety.
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(a) Input power applied to an active core.
It contains two non-zero parts with details
explained in manuscript.
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(b) Temperature caused by input power given
above.
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(c) Power budget calculated dynamically by
GDP for each future second. Power budget
is largest when the system is at ambient
20 ◦C, it equals to steady state power budget
when temperatures of active cores are at ther-
mal threshold 80 ◦C and the system reaches
steady state. Power budget is rounded to in-
tegers in this figure for better demonstration.

Fig. 10. Demonstration of GDP’s dynamic power budgeting ability which
handles performance boost automatically. Please note that input power
is artificially given and is not effected by the calculated power budget in
this example.

TABLE 3
Computing time comparison of GDP, reverse GDP, and parallel GDP.

For parallel GDP, the 64-core system and 100-core system are divided
into four 16-core systems and four 25-core systems, respectively.

Core Active GDP Reverse GDP Parallel GDP
# # (ms) (ms) (ms)

64

12 2.7 8.5 0.24
32 5.5 6.7 0.58
40 6.2 5.1 0.67
52 15 3.4 0.97
60 16 2.1 1.1

100

24 5.3 22 0.44
52 16 17 0.92
64 17 14 1.2
84 19 7.0 1.7
92 22 4.1 1.8

(a) Temperature distribution
of the 64-core system with
56 active cores located by re-
verse GDP.

(b) Temperature distribu-
tion of the 64-core system
with 32 active cores lo-
cated by parallel GDP. Only
the upper left 16-core sub-
system is shown here due to
symmetry.

Fig. 11. Examples of reverse GDP and parallel GDP.

5.3 Performance of the overhead reduction techniques

In this part, we test the performance of the two overhead
reduction techniques (reverse GDP and parallel GDP) pro-
posed in Section 4.5.

The power budget and system performance results of
reverse GDP and parallel GDP are given in Table 2, and
the computing time results (for two systems with large core
number) are shown in Table 3.

First, let us look at the results of reverse GDP, which
is proposed to reduce the GDP computing overhead for
systems with high active core ratio. One active core allo-
cation example of reverse GDP for the 64-core system with
56 active cores is given in Fig 11(a) . System performance
wise, reverse GDP is very close to the standard GDP as seen
from Table 2. This is because the active core distribution
found by reverse GDP is as optimal as standard GDP. At the
same time, reverse GDP brings significant computing time
reduction for systems with high active core ratio as shown in
Table 3, since less iterations are performed in reverse GDP.

Then, we analyze the results of parallel GDP, which is
introduced to reduce the GDP computing time for systems
with large core number. Two systems with large core num-
ber are tested: the 64-core system and 100-core system are
divided into four 16-core systems and four 25-core systems
for parallel GDP, respectively. As seen from Table 2, system
performance with parallel GDP is a little lower than that
of the standard GDP. This is expected since the active core
distribution found by parallel GDP is less optimal than the
one found by standard GDP (one example of active core
distribution found by parallel GDP is given in Fig. 11(b),
for the 64-core system with 32 active cores). On the other
side, the computing time is drastically reduced by parallel
GDP as shown in Table 3, meaning the system is safer with
shorter power budgeting computing delay.

6 CONCLUSION

In this article, we have demonstrated the new dynamic
power budgeting method called GDP. The new method
formulates the power budgeting problem as a constrained
power optimization problem. Then, it employs a greedy
based algorithm to efficiently find a sub-optimal active
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core distribution, and computes the corresponding power
budget considering current thermal condition of the sys-
tem. As a dynamic method for dark silicon multi/many-
core systems, GDP provides a higher and less pessimistic
power budget than the existing methods under the same
thermal constraint, which means users can harness more
performances from the dark silicon computing system than
existing power budgeting methods. Both theoretical studies
and experimental results show that GDP outperforms TSP,
which is the state-of-the-art power budgeting technology for
dark silicon multi-core systems.
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[32] H. Khdr, S. Pagani, Éricles Sousa, V. Lari, A. Pathania, F. Han-
nig, M. Shafique, J. Teich, and J. Henkel, “Power density-aware
resource management for heterogeneous tiled multicores,” IEEE
Trans. on Computers, vol. 66, no. 3, pp. 488–501, March 2017.

[33] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA
challenges in the dark silicon era,” in Proc. Design Automation Conf.
(DAC), June. 2014, pp. 1–6.

[34] M. Shafique, D. Gnad, S. Garg, and J. Henkel, “Variability-aware
dark silicon management in on-chip many-core systems,” in Proc.
European Design and Test Conf. (DATE), March 2015, pp. 387–392.



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XX XXXX 16

[35] H. Wang, M. Zhang, S. X.-D. Tan, C. Zhang, Y. Yuan, K. Huang,
and Z. Zhang, “New power budgeting and thermal management
scheme for multi-core systems in dark silicon,” in Proc. IEEE Int.
System-on-Chip Conf. (SOCC), September 2016.

[36] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan,
K. Skadron, and M. R. Stan, “HotSpot: A compact thermal model-
ing methodology for early-stage VLSI design,” IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, vol. 14, no. 5, pp. 501–513,
May 2006.

[37] H. Wang, S. X.-D. Tan, D. Li, A. Gupta, and Y. Yuan, “Composable
thermal modeling and simulation for architecture-level thermal
designs of multi-core microprocessors,” ACM Trans. on Design
Automation of Electronics Systems, vol. 18, no. 2, pp. 28:1–28:27,
March 2013.

[38] W. Huang, K. Sankaranarayanan, K. Skadron, R. J. Ribando,
and M. R. Stan, “Accurate, pre-RTL temperature-aware processor
design using a parameterized, geometric thermal model,” IEEE
Trans. on Computers, vol. 57, no. 9, pp. 1277–1288, 2008.

[39] V. Hanumaiah, S. Vrudhula, and K. Chatha, “Performance op-
timal online DVFS and task migration techniques for thermally
constrained multi-core processors,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 11, pp. 1677–
1690, November 2011.

[40] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann, “TILTS: A fast architectural-level transient thermal
simulation method,” Journal of Low Power Electronics, vol. 3, no. 1,
pp. 13–21, April 2007.

[41] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts, 9th ed. Wiley, 2012.

[42] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. Int.
Symp. on Computer Architecture (ISCA), June 2000, pp. 83–94.

[43] Z. Lu, J. Lach, M. R. Stan, and K. Skadron, “Improved thermal
management with reliability banking,” IEEE MICRO, vol. 25, no. 6,
pp. 40–49, 2005.

[44] D. Cuesta, J. Ayala, J. Hidalgo, D. Atienza, A. Acquaviva, and
E. Macii, “Adaptive task migration policies for thermal control in
MPSoCs,” in IEEE Annual Symposium on VLSI, 2010, pp. 110–115.

Hai Wang received the BS degree from
Huazhong University of Science and Technol-
ogy, China, and the MS and PhD degrees from
University of California, Riverside, in 2007, 2008,
and 2012, respectively. He is currently an as-
sociate professor with the University of Elec-
tronic Science and Technology of China. His
research interests mainly lie in electrical/thermal
verification and optimization of VLSI circuits and
systems. He has served as technical program
committee member of several international con-

ferences including DATE, ASP-DAC and ISQED, and also served as
reviewer of many journals including IEEE Transactions on Computers,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, and ACM Transactions on Design Automation of Electronic
Systems.

Diya Tang received the bachelor’s degree from
the University of Electronic Science and Tech-
nology of China in 2017.

Currently, she is a master student at UESTC.
Her current research interests include thermal
analysis, power analysis, and thermal manage-
ment of integrated circuit.

Ming Zhang received the BS and MS degrees
from University of Electronic Science and Tech-
nology of China.

He is now a software engineer at Cadence.
His research interests focus on place and route
of power grid, mainly on the algorithm develop-
ment and optimization.

Sheldon X.-D. Tan (S’96-M’99-SM’06) received
his B.S. and M.S. degrees in electrical engi-
neering from Fudan University, Shanghai, China
in 1992 and 1995, respectively and the Ph.D.
degree in electrical and computer engineering
from the University of Iowa, Iowa City, in 1999.
He is an associate director of computer engi-
neering programn (CEN) and is a Professor in
the Department of Electrical Engineering, Uni-
versity of California, Riverside, CA. His research
interests include VLSI reliability modeling, opti-

mization and management at circuit and system levels, thermal mod-
eling, optimization and dynamic thermal management for many-core
processors, statistical modeling, simulation and optimization of mixed-
signal/RF/analog circuits, parallel circuit simulation techniques based on
GPU and multicore systems.

He received NSF CAREER Award in 2004 and received Outstanding
Oversea Investigator Award from the National Natural Science Foun-
dation of China (NSFC) in 2008. Dr. Tan received the Best Paper
Award from 2007 IEEE International Conference on Computer Design
(ICCD’07), the Best Paper Award from 1999 IEEE/ACM Design Automa-
tion Conference. He also receives three Best Paper Award Nomination
from IEEE/ACM Design Automation Conferences in 2005, 2009 and
2014 and one Best Paper Award nomination from ASP-DAC in 2015. He
now is serving as the Editor-In-Chief for Integration, The VLSI Journal.
He is also serving as an Associate Editor for three journals: IEEE
Transaction on VLSI Systems (TVLSI), ACM Transaction on Design
Automation of Electronic Systems (TODAES).

Chi Zhang received the bachelors degree from
Taiyuan University of Science and Technology,
and the masters degree from the Microelectron-
ics Research Institute of Chinese Academy of
Sciences, in 1994 and 2003. He is currently
working toward the PhD degree with the Uni-
versity of Electronic Science and technology of
China. His main research directions are mixed-
signal integrated circuit design, EDA technology,
multi-mode biometrics technology.

He Tang (M’09) received the BSEE degree from
the University of Electronic Science and Tech-
nology of China, Chengdu, China, the MS de-
gree in electrical and computer engineering from
the Illinois Institute of Technology, Chicago, and
the PhD degree in electrical engineering from
University of California, Riverside, in 2005, 2007,
and 2010. From 2010 to 2012, he was with
OmniVision Technologies Inc., in Santa Clara,
California, as an Analog IC Designer, where he
worked on high-speed I/O inteface. Since 2012,

he has been an associate professor and subsequently a professor
with the University of Electronic Science and Technology of China,
Chengdu, China. He has authored or coauthored more than 40 papers.
His research interests focus on data converters and analog/mixed-signal
IC designs. His pas work includes high-speed high-resolution pipelined
ADCs with digital calibration and high-performance ultra-low-power SAR
ADCs. He has served on IEEE CAS Analog Signal Processing Technical
Committee (ASPTC) since 2013. He is a member of the IEEE.

Yuan Yuan received his BS and MS degrees
from the University of Electronic Science and
Technology of China, in 1992 and 2005, respec-
tively. He is currently an associate professor with
the University of Electronic Science and technol-
ogy of China. His main research directions are
electronic measuring equipment design, com-
puter based measuring technology, embedded
system, etc. He has published more than 10 re-
search papers in international conferences and
journals.


