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Abstract—Accurate and fast thermal estimation is important for the runtime thermal regulation of modern microprocessors due to

excessive on-chip temperatures. However, due to the nonlinear relationship between the leakage power and temperature, full-chip

thermal estimation methods suffer slow speed and scalability issue when the increasing static leakage power is considered. In this

work, we propose a new fast leakage-aware full-chip thermal estimation method. Unlike traditional methods, which use iteration to

handle the leakage-temperature nonlinearity dependency issue, the new method applies a dynamic linearization algorithm, which

adaptively transforms the original nonlinear thermal model into a number of local linear thermal models. In order to further improve the

thermal estimation efficiency, a specially-designed adaptive model order reduction method is integrated into the thermal estimation

framework to generate local compact thermal models. Our numerical results show that the new method is able to accurately estimate

full-chip transient temperature distribution by fully considering the nonlinear leakage-temperature dependency with fast speed. On

different chips with core number ranging from 9 to 36, it achieved 85× to 589× speedup in average against traditional iteration based

method, with average thermal estimation error to be around 0.2 ◦C.

Index Terms—Thermal estimation, transient analysis, leakage, full-chip.

✦

1 INTRODUCTION

Thermal and its related reliability issues have become the
primary concerns for high performance microprocessors,
especially after the breakdown of the so-called Dennard
scaling, since power density starts to increase as IC tech-
nology advances [1], [2]. To enhance reliability, researchers
have proposed many thermal regulation or dynamic ther-
mal management methods, including clock gating, power
gating, Dynamic Voltage and Frequency Scaling (DVFS),
and task migration techniques [3], [4], [5], [6].

To make all of those on-chip thermal management tech-
niques work, one critical aspect is to correctly estimate
the full-chip temperature profile. Some existing methods
rely on on-chip physical thermal sensors to make ther-
mal regulation decisions. However, the limitation in those
methods is that only very few physical thermal sensors are
available, thus the temperature information obtained only
from sensors may be insufficient or sometimes misleading
for thermal regulation decision making. On the other hand,
obtaining on-chip temperature information by runtime full-
chip thermal estimation becomes a more practical solution.
These methods first construct the thermal model of the
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processor, and then calculate the thermal estimation based
on the power estimation as inputs to the thermal model [7],
[8]. As a result, they are able to obtain temperatures at
positions where there are no physical thermal sensors.

One major drawback of existing runtime full-chip esti-
mation methods is the lack of static (leakage) power con-
sideration. It is well known that power of microprocessors
is mainly composed of dynamic power and static (leakage)
power. Dynamic power is caused by the logic gate switch-
ing, and can be estimated by obtaining the logic activity rate
of each module using performance counter. Most existing
runtime full-chip thermal estimation methods use dynamic
power only without considering leakage power or just use
simplified leakage power models. One reason is that dy-
namic power accounts for the majority of the total power for
old IC technologies, thus considering dynamic power only
is sufficient for runtime thermal estimation. Another reason
is there exists the nonlinear relationship between leakage
power and on-chip temperature. As a result, thermal estima-
tion considering leakage power becomes nonlinear transient
simulation process, which is difficult to compute and cannot
scale to very large problem sizes (such as full-chip thermal
analysis) for runtime applications.

However, for today’s microprocessors, the leakage
power cannot be neglected anymore in runtime thermal esti-
mation as the percentage of leakage power in total power is
quite significant for new generations of the microprocessors.
The breakdown of Dennard scaling is a clear indication of
this trend as leakage power does not scale with transistor
size [1]. What is even worse is that leakage is exponentially
dependent on temperature, so the leakage power will cause
the processors to heat up and further increase leakage power
itself. As a result, leakage power is one of the most impor-
tant limiting factors of processor performance today and an
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important or even major part of total power for thermal
estimation.

In order to take the important leakage power into ac-
count for runtime thermal estimation, we have to fully
consider nonlinear interactions between leakage power and
temperature. Existing iterative methods were proposed to
handle such nonlinearity [9], [10] for steady state thermal
estimation. Although these methods are considered to be
accurate, they perform temperature calculation using ther-
mal model multiple times in the iteration, which is slow
for full-chip thermal estimation. The Green’s function based
technique was also proposed to handle the leakage-aware
thermal estimation problem in [11]. However, it is unable to
handle general transient thermal estimation. More discus-
sions of relevant work will be given in the next section.

In this article, we propose a fast leakage-aware full-chip
transient thermal estimation method. The new method tries
to mitigate the mentioned problems in the existing full-chip
thermal estimation methods. Our major contributions are
summarized as follows:

1) First, to avoid the iteration between thermal analysis
and leakage analysis, the new method uses Taylor
expansion based local linearization technique to
build a number of localized linear thermal models.
The new linear thermal models are formulated in
traditional thermal model form, so that general sim-
ulation methods can be easily applied to them.

2) To further increase the thermal estimation speed, a
specially designed model order reduction method
with partial and incremental SVD update technique
is integrated into the estimation framework to gen-
erate local compact thermal models.

3) Numerical results demonstrate that the new thermal
analysis method is able to accurately estimate full-
chip transient temperature distribution by fully con-
sidering the nonlinear leakage-temperature depen-
dency and it is significantly faster than the iteration
based method.

The remaining part of this article is organized as follows.
In Section 2, we first review the important works in fast
thermal estimation of IC systems. Next, in Section 3, we
present the basic knowledges of static power modeling and
thermal modeling techniques, and introduce the iteration
based leakage-aware thermal estimation and its problems.
Then, we demonstrate our new fast leakage-aware full-
chip transient thermal estimation method in Section 4. The
experimental results showing the accuracy and speed of the
newly proposed method are presented in Section 5. Finally,
Section 6 concludes this article.

2 PRIOR WORK

In this section, we briefly review some important researches
in fast thermal estimation of IC chips, especially in leakage-
aware thermal estimation.

Many thermal estimation methods have been proposed
to aid thermal aware design and runtime thermal regula-
tion of the microprocessors. The thermal estimation using
numerical finite element methods (FEM) or finite difference
methods (FDM) such as ANSYS and COMSOL are quite

accurate but very computationally expensive. These tools
do not fit well for architectural level thermal aware design
and runtime thermal regulation in which estimation speed
and efficiency are critical. As a result, many efforts were de-
voted to accelerating the FEM/FDM based thermal estima-
tion: ISAC utilizes the spatially adaptive thermal modeling
technique to increase thermal estimation speed [7]; model
order reduction based methods speed up thermal estimation
by reducing the size of the original thermal model [12],
[13], [14]; HotSpot simplifies the package and chip model
by using compact RC based model [10], [15]. TILTS was
developed based on HotSpot by assuming power remains
constant between two adjacent discrete time points [16].

Besides FEM/FDM based methods, Green’s function
based methods were also proposed for full-chip thermal
estimation using 2-D spatial Fourier transforms, such as
the work in [17]. Unlike FEM/FDM based methods which
usually have no problem at performing transient thermal
simulation, Green’s function based methods are mainly
used for steady state thermal analysis [17]. To mitigate this
problem, the Power Blurring method was developed based
on the Green’s function with transient thermal estimation
ability [18].

The works mentioned above share a common prob-
lem: they have difficulty in considering the temperature
dependent leakage power for transient thermal estimation,
because they are based on linear thermal systems. Only few
fast thermal estimation works are able to handle leakage
power. For instance, HotSpot applies the iterative based
method for steady state analysis with degraded simulation
efficiency. In [19], researchers proposed a method to estimate
leakage power using coarse-grained thermal models. How-
ever, this method does not have transient estimation ability,
and the leakage power it provides is too coarse to be used
for full-chip thermal estimation. Recently, LightSim [11] and
3DSim [20] try to provide a leakage-aware transient thermal
estimation method based on Green’s function. However,
they are limited to calculating the step temperature response
with only constant (time invariant) input power map, and
is not able to perform general transient thermal estimation
with time varying power map traces.

3 BACKGROUND

In this section, we first present static power modeling and
thermal modeling techniques, which are important basic
knowledges for our new work. Then, we show the tradi-
tional iteration based solution of the leakage-aware thermal
estimation, and point out its problems, which are solved in
this work. The mathematical notations used in this article
are summarized in Table 1 for better presentation.

3.1 Static power modeling

It is well known that, the total power of chip, denoted as p, is
composed of dynamic power and static power. The dynamic
power, denoted as pd, depends on the activity of the chip,
and thus can be easily estimated by performance counter
based methods [21], [22], [23].

Very different from dynamic power, the static power ps,
caused by leakage current Ileak as

ps = VddIleak, (1)
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TABLE 1: Mathematical notations.

p, P total power in scalar form and vector form
pd, Pd dynamic power in scalar form and vector form
ps, Ps static power in scalar form and vector form
Ileak total leakage current
Isub, Igate subthreshold current and gate leakage current
Ilin linearized subthreshold current
vT thermal voltage
Tp, T temperature in scalar form and vector form
Tp0 Taylor expansion temperature point
K, η process related parameters for leakage current
P0, As vector and matrix for linear static power model (9)
G, C, B, L thermal model matrices of the whole system
Y temperature vector with only chip temperatures
Gl new G matrix for linearized thermal model
M sampling response matrix used for MOR
Ma new M at new Taylor expansion points
ML sampling response matrix with both M and Ma

U , Σ, V SVD matrices of M as in (15)
Ut, Σt, Vt SVD matrices inside incremental SVD
F , H , UL, ΣL temporary matrices inside incremental SVD
Q, R QR factorization matrices inside incremental SVD
Ur the projection matrix in MOR

Ĝl, Ĉ, B̂, L̂ reduced linearized thermal model matrices

T̂ temperature vector in the reduced thermal model

is independent of the chip’s activity. Values of static power
are harder to obtain than dynamic power, mainly because of
the special temperature sensitivity caused by leakage cur-
rent. IC leakage current has various components, including
subthreshold current, gate current, reverse-biased junction
leakage current and so on. Among these components, sub-
threshold current Isub and gate leakage current Igate are the
main parts. As a result, we can ignore other parts of leakage
and get the leakage current approximation [19], [24], [25] as

Ileak = Isub + Igate. (2)

The subthreshold current is modeled in the commonly ac-
cepted MOSFET transistor model BSIM 4 [26] as (also apply
VDS ≫ vT [19])

Isub = KvT
2e

VGS−Vth
ηvT (1− e

−VDS
vT ) ≈ KvT

2e
VGS−Vth

ηvT , (3)

where vT =
kTp

q
is the thermal voltage and Tp is a scalar

representing temperature at one place 1, K and η are process
related parameters, and Vth is the threshold voltage.

While the subthreshold current is highly related to tem-
perature, the gate current Igate, which results from tunnel-
ing between the gate terminal and the other three terminals,
does not depend on temperature and can be considered as
a technology-dependent constant.

Apparently, the leakage current has a complex relation-
ship with temperature. In this work, we use (1), (2), and
(3) to model the static power considering such relationship.
The parameters of leakage current can be obtained by curve
fitting using HSPICE simulation data. In order to see the
accuracy of the model used, Fig. 1 shows an HSPICE simula-
tion result of leakage using TSMC 65 nm process model and
its curve fitting result using approximate leakage model.
From the figure, we can see that the static power model
has high accuracy for all common temperatures of IC chips.

We can conclude that the static power distribution de-
pends mainly on the temperature distribution for a certain

1. T introduced latter in (4) is a vector representing temperatures at
multiple positions
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Fig. 1: Comparison of leakage of a TSMC 65 nm process
MOSFET from HSPICE simulation with its curve fitting
result using (3). An example of temperature region division
is also shown in the figure, which will be discussed later.

chip with constant physical parameters. Since temperature
also depends on power, in order to view the whole picture,
thermal model of IC chip is used to describe temperature’s
dependency on power as shown next.

3.2 Thermal modeling

In order to calculate the full-chip temperature distribution,
a thermal model with the ability to link the power and
temperature is needed. To perform thermal analysis for an
IC chip, we usually divide both the chip and its package
into multiple blocks called thermal nodes, with the partition
granularity determined by accuracy requirements. Then we
compute the thermal resistances and capacitances among
these thermal nodes, which model the thermal transport and
power response behaviors.

For example, for a certain chip with n total thermal
nodes, we can generate its thermal model as

GT (t) + C
dT (t)

dt
= BP (T, t),

Y (t) = LT (t),
(4)

where T (t) ∈ R
n is the temperature vector (distinguished

from Tp, which is a scalar representing temperature at only
one place), representing temperatures at n places of the chip
and package; G ∈ R

n×n and C ∈ R
n×n contain equivalent

thermal resistance and capacitance information respectively;
B ∈ R

n×l stores the information of how powers are injected
into the thermal nodes; P (T, t) ∈ R

l is the power vector,
which contains power consumptions of l components on
chip, including both dynamic power vector Pd and static
power vector Ps, i.e., P (T, t) = Ps(T, t) + Pd(t), reminding
that static power Ps(T, t) is actually a function of tem-
perature T ; Y (t) ∈ R

m is the output temperature vector,
containing only temperatures of thermal nodes that the user
is interested in, for example, thermal nodes on the chip
only (excluding package thermal nodes); L ∈ R

m×n is the
corresponding output selection matrix which selects the m
chip temperatures from T (t).

Model (4) successfully links power and temperature
distribution of chip, but for computer based simulation, we
still have to take care of the differential term “dT (t)/dt”.
Normally, we can discretize it, for example using backward
Euler’s method with time step h as

(
C

h
+G)T (t+h) =

C

h
T (t)+B(Pd(t+h)+Ps(T, t+h)). (5)
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Fig. 2: Flow diagram of traditional iteration based transient
thermal estimation method for one time step.

The next question would be how we can use the ther-
mal model (5) for transient thermal estimation. It seems
straightforward as in the flowing way: simply take T (t)
(previously calculated, or initial value provided) together
with the power information, and we are able to calculate the
state of the next time step T (t+h). However, such transient
thermal estimation is valid for dynamic power only scenario
and cannot be used if static power is considered. This
is because the static power Ps(T, t + h) is a function of
current temperature T (t + h), leading to the fact that we
need T (t + h) to compute Ps(T, t + h) while we also need
Ps(T, t + h) to compute T (t + h), similar to the famous
chicken or the egg causality dilemma.

3.3 Iteration based leakage-aware thermal estimation

As explained before, due to the dependency of static power
on temperature, (5) is a nonlinear equation, and as a result,
T (t+h) cannot be calculated directly. Traditionally, iterative
method is used to solve such equation [9], [20], [27], using
the flow for one thermal estimation time step shown in
Fig. 2.

First, based on the process technology used, we deter-
mine P 0

s (T, t + h), which is an initial guess of Ps(T, t + h).
Temperature distribution T (t + h)0 is calculated using (5)
with such initial guess. Then, the static power is updated as
P 1
s (T, t+ h) using (1), (2), (3) with T (t+ h)0. Next, temper-

ature distribution can be updated again as T (t + h)1 using
thermal model (5) and P 1

s (T, t + h), which concludes one
iteration loop. Such iteration goes on until the convergence
test is satisfied as ‖P i

s(T, t+h)−P i−1
s (T, t+h)‖ < ǫ. Finally,

T (t + h)i−1 is outputted as the estimation result for the
current time step.

Although the result of this iteration based method is
considered to be accurate when the tolerance ǫ is chosen to
be small enough, its computing time is a serious problem.
For full-chip leakage-aware temperature estimation, thermal
model in (5) is large, especially when a fine-grained chip
thermal analysis is needed. Solving (5) many times at each
time step makes the simulation time to be long, which is a

drawback of the iteration based method when it is used for
runtime temperature estimation.

4 FAST LEAKAGE-AWARE FULL-CHIP THERMAL

ESTIMATION

In this work, in order to resolve the long computing time
problem of the iteration based method, we propose a novel
non-iteration based fast full-chip temperature estimation
method, which adaptively transforms the original nonlinear
thermal model into local linear thermal model to avoid the
time-consuming iterations. In addition, an adaptive model
order reduction method with incremental SVD update tech-
nique is specially designed and integrated into the non-
iteration based thermal estimation method to achieve fur-
ther speedup.

4.1 Local linearization of subthreshold current

As shown before, the major difficulty of calculating leakage-
aware temperature distribution comes from the nonlinear
thermal model shown in (5), which is caused by the non-
linear dependency of subthreshold current on temperature.
Thus, a basic idea of our proposed method is to approximate
the original nonlinear leakage model using multiple new
linear leakage models. By using such linear leakage models,
we can reformulate the original nonlinear thermal model
into multiple linear thermal models, such that traditional
non-iteration based thermal estimation method can be ap-
plied to them.

In order to generate a linear leakage model, we perform
Taylor expansion on the original nonlinear Isub model (3) at
a reference temperature point Tp0

as:

Isub =K(
k

q
)2e

q(VGS−Vth)

ηkTp0

× (Tp0

2 + (2Tp0
−

q(VGS − Vth)

ηk
)(Tp − Tp0

))

+ o[(Tp − Tp0
)2],

(6)

where o[(Tp−Tp0
)2] is the remainder. If we approximate the

original function by ignoring the remainder o[(Tp − Tp0
)2],

we can then get the linearized Isub, denoted as Ilin:

Ilin =K(
k

q
)2e

q(VGS−Vth)

ηkTp0

× (Tp0

2 + (2Tp0
−

q(VGS − Vth)

ηk
)(Tp − Tp0

)).

(7)

Normally, the approximation accuracy of Ilin can be
guaranteed when the reference temperature point Tp0

is
close enough to the actual temperature value Tp. From
previous research, it has been shown that due to the charac-
teristics of today’s semiconductor process, such local linear
approximation of leakage has high accuracy around the
expansion temperature point [11], [19].

4.2 Formulating local linear thermal model

Since we have linearized the relation of subthreshold cur-
rent and temperature, we can rewrite the static power and
temperature relation in a linear form as:

ps = VddIleak

= Vdd × (Ilin + Igate)

= Vdd × (Ilin(Tp) + Iconst),

(8)
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where Ilin(Tp) represents the terms associated with Tp in
(7), Iconst contains constant terms that are not associated
with Tp in (7) and the gate leakage Igate.

Based on this new static power model, we can rebuild
a linear thermal model to replace (5). In order to do that,
we need to integrate (8) into (4). Please note that (8) is in
scalar form for only one certain thermal node while (4) is
in vector/matrix form including information of all thermal
nodes. So we first rewrite (8) in vector/matrix form by
collecting and accumulating scalars Ilin(Tp) and Iconst at
multiple positions of the chip into vectors, then change
the current variables to power by multiplying voltage Vdd.
Rewriting from (8), the linearized static power representa-
tion in vector/matrix form is

Ps = P0 +AsT, (9)

where P0 ∈ R
l is a known vector, with each element formed

by terms not associated with Tp in (8) at each position of
the chip. As ∈ R

l×n is a known rectangular diagonal matrix
(the left l × l block matrix is diagonal representing thermal
nodes on the chip, and the right l × (n − l) block matrix is
all zeros representing the thermal nodes of package), with
each diagonal element formed by the coefficient associated
with Tp in (8) at each position of the chip.

Integrating (9) into (4), and let Gl = G−BAs, we have

GlT (t) + C
dT (t)

dt
= B(Pd(t) + P0),

Y (t) = LT (t).
(10)

Now, we have successfully obtained a linear thermal model
considering static power and eliminated the nonlinear re-
lationship of static power and temperature. Then, we can
discrete this model using backward Euler’s method, result-
ing in its transient estimation form similar to (5) as

(
C

h
+Gl)T (t+ h) =

C

h
T (t) +B(Pd(t+ h) + P0),

Y (t+ h) = LT (t+ h).
(11)

Obviously, simulating the locally linearized leakage-aware
thermal model is as straightforward as in (5) by viewing
“Gl” as the new “G” matrix, and “Pd(t) + P0” as the new
“P (T, t)” vector.

4.3 Selecting the proper expansion points

Although the new linear thermal model can be generated
as shown before, the Taylor expansion temperature points
still need to be determined since the linear thermal model
accuracy depends on them, and P0 and As in (9) are formu-
lated by the expansion point information. Now, we discuss
how to choose proper values of Tp0

for thermal nodes on
the chip.

As shown in Section 4.1, as a property of Taylor ex-
pansion approximation, linear approximation (7) (also the
equivalent (9) and (10)) is accurate if the actual temperature
Tp (or T in vector form) is close enough to Tp0

. As a
result, in order to ensure the approximation accuracy, we
want each expansion point Tp0

to be close to the actual
temperature Tp in transient thermal estimation. This means
that the straightforward choice of an expansion point is
Tp0

= Tp. However, such strategy requires updating Tp0

at each time step, leading to long computing time because
many LU decompositions have to be performed. To see this
problem clearly, please note that we need to perform LU
decomposition of (C

h
+ G − BAs) in the transient thermal

estimation process in (11), and matrix As depends on the
Taylor expansion points Tp0

. If we update the expansion
points for every estimation time step, LU decomposition
also has to be re-performed for every time step, causing
serious computing cost problem.

In order to balance the accuracy and computing cost,
we need to propose a flexible strategy to update the Taylor
expansion point Tp0

. By observing Fig. 1, we notice that at
positions where the nonlinearity of Isub is relatively weak,
o[(Tp − Tp0

)2] can be small even if Tp0
is far from Tp.

Inspired by this, we propose a strategy to determine Taylor
expansion points in transient analysis: for each temperature,
we set a temperature region with a certain length, as shown
in Fig. 1. Assume Tp0

is taken as the Taylor expansion point
for a thermal node, such expansion point Tp0

will be used
when the node temperature Tp is within the temperature
region of Tp0

(in Fig. 1, it is the region with 10 ◦C length as
example). We may update the expansion point only when
the node temperature Tp is out of the temperature region
of Tp0

. The temperature region lengths are determined off-
line according to the nonlinear temperature-leakage curve
of a specific fabrication process to balance the estimation
accuracy and speed. In general, shorter temperature region
leads to better accuracy but slower speed for estimation, as
shown later in experiments (Section 5.4). In addition, the
region can be shorter for temperature point with stronger
nonlinearity, and vice versa. For the temperature-leakage
curve shown in Fig. 1, the strengths of the nonlinearity are
quite similar for the whole temperature range, so we simply
use the same region length for all temperatures.

It is also noticed that Tp is an unknown variable. Thus,
we need some available information to replace Tp, in order
to determine the correct temperature regions and the corre-
sponding Taylor expansion points. In this work, we employ
the on-chip physical thermal sensors to achieve such pur-
pose. Since there are only limited number of thermal sensors
and we also do not want to change the linearized model (10)
(As and P0) for temperature region change at single or very
few positions, we use the thermal sensor readings to test
our estimation error in real-time and determine whether
we should change the linearized model or not. Assume
there are k thermal sensors with readings at current time
as Tsen1

, Tsen2
, . . ., Tsenk

, and the corresponding estimated
temperature values by (10) at thermal sensor positions are
Test1 , Test2 , . . ., Testk . Then the maximum estimation error
at the sensor positions is calculated as

Errmax = max
i=1,2,...,k

|Tseni
− Testi |. (12)

If Errmax > Errth, where Errth is the user defined thresh-
old value, it means that the current linear thermal model (10)
is not accurate any more, as demonstrated experimentally in
Fig. 6. In this case, we update the linear thermal model by
changing the Taylor expansion points for all thermal nodes
based on their temperature regions as shown in Fig. 1. Oth-
erwise, we just keep using the current linear thermal model
and continue the transient thermal estimation process.
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Besides being able to estimate temperature at runtime
with thermal sensors, the new method can also be used
at design time when thermal sensor is unavailable. As
a result, we propose a thermal estimation solution even
without thermal sensor information: we simply estimate the
temperature regions using the temperature distribution at
previous time point and determine expansion points for all
nodes. Testing this strategy with “lin & svd update” on the
16-core system as shown in the experiment section, we still
get a good result in both accuracy and speed: an average
temperature estimation error of 0.32 ◦C and an average
speedup of 56.64× against “ite” and 11.39× against TILTS.

4.4 Speed up thermal estimation by model order reduc-

tion with incremental SVD update

Although we have successfully obtained linear thermal
models to avoid iterations, the size of the linear thermal
model in (10) is large especially when fine-grained thermal
analysis is performed. One may naturally assume that tra-
ditional model order reduction (MOR) can be applied to
the linear thermal model (10) to further speed up thermal
estimation. Unfortunately, such simple strategy does not
work well for the leakage-aware thermal estimation. The
reason is that the linear thermal model keeps changing
during thermal estimation process due to the change in
Taylor expansion points introduced previously. In order to
handle that, one may offer two solution choices, but neither
of them will work. One choice is to re-perform MOR upon
the change of linear thermal model. However, by taking
this solution, we may end up with limited speedup or
even longer estimation time because MOR process itself
takes a lot of time as it requires solving the original linear
thermal model. Another choice is to perform MOR offline
for all possible linear thermal models, and store the reduced
models in a library for online thermal estimation usage.
However, since each position on chip has multiple potential
temperature regions, the number of possible linear thermal
models is extremely large. Performing MOR on all these
possible linear thermal models offline and storing them in
a library is impossible for both computing time and storage
aspects.

In this section, we propose a model order reduction
method specially designed for our new leakage-aware ther-
mal estimation method. It updates the projection matrix of
MOR for only few necessary scenarios. The projection ma-
trix update is also performed in an incremental way, which
greatly reduces the update number and MOR computing
time. We will first introduce how MOR is applied to single
linear thermal model, then the proposed MOR method for
the leakage-aware thermal estimation is presented.

4.4.1 Model order reduction for single linear thermal model

First, we show how MOR can be performed on single linear
thermal model (10) to generate a compact thermal model.
Modern MOR methods are mostly projection based [28],
[29]. The basic idea of these projection based methods is to
pass the important information of the original model to the
reduced model through the projection process. Depending
on which information is passed to the reduced model,
projection based MOR methods can be classified into several

categories. In this article, we demonstrate the popular sam-
pling based MOR method, which passes original model’s
state frequency responses of several frequency points (called
sampling points) to the reduced model through projection.
Please note that many other MOR methods can also be used.

To formulate the projection matrix, we need to compute
the state frequency responses of the thermal model (10) at
the sampling points. Assume we choose several sampling
points s1, s2, . . ., sp, for the i-th sampling point, we calculate
the corresponding state frequency response of (10) as

T (si) = (Gl + siC)−1B, (13)

where T (si) ∈ R
n×l. 2 By collecting frequency responses of

all sampling points, we can generate a sampling response
matrix as

M =
[

T (s1) T (s2) . . . T (sp)
]

, (14)

where M ∈ R
n×lp.

On the sampling point selection side, we suggest choose
more low frequency sampling points for thermal models.
This is because the equivalent thermal circuit works as a low
pass filter, most high frequency component on the power
side will be filtered out on the temperature side. In another
word, temperature does not have much high frequency
component even when the input power is changing fast.
We have plotted the frequency responses of the original
thermal model and the reduced model generated using low
frequency samples in experiment part (Fig. 8). It is clear that
the frequency responses show low pass filter properties, and
the reduced model only shows noticeable error beyond 100
Hz, which already has a huge magnitude drop from DC.
We also remark that sampling points can be found in an
adaptive and automatic way to optimize the wide frequency
band accuracy. For details of such automatic sampling point
selection methods, please refer to [30].

It is noted that M may contain a lot of redundant infor-
mation, since frequency responses of two different sampling
points may contain similar information. In order to get
rid of the redundancies, we further perform singular value
decomposition (SVD) on M as:

UΣV T SVD
←−−−M (15)

where U ∈ R
n×n is a unitary matrix whose columns span

the column space of M , V ∈ R
lp×lp is also a unitary matrix

whose columns span the row space of M , Σ ∈ R
n×lp is

a diagonal matrix with non-negative singular values σi

listed in descending order on the diagonal. One property
of SVD is that the singular value reveals the importance of
its corresponding column space basis in U as well as its
row space basis in V . In another word, if σi is very small,
we can simply eliminate σi as well as the i-th columns of
U and V in (15), and still get a quite good approximation
of M , meaning information in i-th columns of U and V is
redundant.

The fact that singular values are ordered in Σ means
columns of U are ordered by importance. So, we only need

2. Since we want the reduced model to be compatible with all differ-
ent input combinations, we replace the input vector with an identity
matrix.
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to keep the first q columns of U and eliminate other columns
without losing much accuracy, as

Ur =
[

u1 u2 . . . uq

]

, (16)

where ui is the i-th column of U . Ur retains the most
important column space information of M . So, we can use
Ur as the projection matrix, and generate a reduced model
as

ĜlT̂ (t) + Ĉ
dT̂ (t)

dt
= B̂(Pd(t) + P0),

Y (t) = L̂T̂ (t),

(17)

where Ĝl ∈ R
q×q , Ĉ ∈ R

q×q , B̂ ∈ R
q×l, and L̂ ∈ R

m×q are
calculated as

Ĝl = UT
r GlUr, Ĉ = UT

r CUr, B̂ = UT
r B, L̂ = LUr. (18)

4.4.2 Thermal estimation using reduced local linear ther-

mal models

Performing thermal estimation using single reduced ther-
mal model is easy with the following transient simulation
form

(
Ĉ

h
+ Ĝl)T̂ (t+ h) =

Ĉ

h
T̂ (t) + B̂(Pd(t+ h) + P0),

Y (t+ h) = L̂T̂ (t+ h).

(19)

However, in our situation, we obtain a series of reduced
local linear thermal models of different Taylor expansion
points on the fly in thermal estimation procedure. Since
these reduced local linear thermal models may be generated
by different projection matrix Ur , the direct thermal estima-
tion method shown above is invalid at the time when the
projection matrix Ur is updated.

To see this problem clearly, assume we update the projec-
tion matrix Ur at current time t+h. Let the projection matrix

of previous time step t as U
(p)
r and the calculated reduced

temperature state at previous time step as T̂ (p)(t). Now if
we calculate the reduced temperature state at current time

T̂ (c)(t+ h) by directly using (19), we get

(
Ĉ(c)

h
+ Ĝ

(c)
l )T̂ (c)(t+ h)

=
Ĉ(c)

h
T̂ (p)(t) + B̂(c)(Pd(t+ h) + P0),

(20)

where Ĝ
(c)
l , Ĉ(c), and B̂(c) are reduced models calculated

using current projection matrix U
(c)
r . Obviously, equation

(20) shown above is incorrect, because current reduced

model is generated by the new projection matrix U
(c)
r , while

T̂ (p)(t) is calculated by previous reduced model which is

generated by U
(p)
r . Please note that reduced temperature

states T̂ (p)(t) and T̂ (c)(t) can be totally different, because
MOR only retains accuracy of the output (Y (t) in (17)), but

not the state (T̂ (t) in (17)).
To solve such problem, we need to transform the pre-

viously calculated T̂ (p)(t) into the new subspace spanned

by the new projection matrix U
(c)
r , so we can get the

approximation of T̂ (c)(t). Because we have the following
approximation

T (t) ≈ UrT̂ (t), (21)

which is applicable to both T̂ (c)(t) and T̂ (p)(t) with U
(c)
r

and U
(p)
r , respectively, we can transform T̂ (p)(t) into current

subspace to approximate T̂ (c)(t) as

T̂ (c)(t) ≈ (U (c)
r )†U (p)

r T̂ (p)(t), (22)

where the symbol “†” means pseudo inverse.
Now, we modify (20) into the following form as

(
Ĉ(c)

h
+ Ĝ

(c)
l )T̂ (c)(t+ h) =

Ĉ(c)

h
(U (c)

r )†U (p)
r T̂ (p)(t)

+ B̂(c)(Pd(t+ h) + P0).

(23)

This equation is used to handle the projection matrix update
in thermal estimation using reduced local linear models.

4.4.3 Specially designed model order reduction with incre-

mental SVD update

Now, we are able to generate compact thermal models using
previously presented method for transient thermal analysis.
However, because Gl depends on the Taylor expansion
points and Ur is generated using Gl, the whole MOR
process introduced previously needs to be re-performed if
the original linear thermal model is updated due to the
change in expansion points. Obviously, we do not want to
re-perform the full MOR process every time the original
model is updated. Instead, we propose two methods to
greatly reduce the thermal estimation overhead caused by
MOR.

The first method prevents thermal estimation from un-
necessary updating of the projection matrix Ur in MOR
when the linear thermal model is updated. It is based on
the observation that one projection matrix may work for
several thermal models provided that the differences among
these thermal models are limited. To explain more clearly,
assume the projection matrix Ur is generated by sampling
a thermal model “Model A”. Then columns of Ur span
a subspace which includes all sampling points’ frequency
responses of “Model A”. For another thermal model “Model
B” with limited difference from “Model A”, the responses of
important frequencies of “Model B” may be still inside or
not far away from the subspace spanned by “Model A”.
Thus, we can still use Ur generated by sampling “Model A”
to reduce “Model B”.

Based on the discussion above, during the thermal esti-
mation process, even when the thermal model is updated
due to the expansion points change, we may keep on using
the previous projection matrix for the updated thermal
model if that projection matrix is determined to be still accu-
rate. The detailed operation is presented as follows. When
thermal model (19) needs to be updated due to expansion
points change, we first update matrix Gl = G − BAs, and

then generate its corresponding reduced matrix Ĝl using
the previous projection matrix Ur . Next, we calculate Errmax

using the temperature estimation results from the reduced

model with new Ĝl. If Errmax is smaller than Errth, it
means the projection matrix Ur is still valid and we continue
the thermal estimation using the updated reduced model.

Computing Ĝl with previous Ur requires only one matrix
multiplication, so the cost is very low. Instead, if Errmax

is larger than Errth, meaning Ur does not work well for
the updated thermal model. In this situation, we need to
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Fig. 3: The diagram of updating Ur using the incremental SVD update method.

Fig. 4: Flow chart of our fast leakage-aware full-chip tran-
sient thermal estimation method for one time step.

compute a new projection matrix Ur using the updated
thermal model.

The second method takes action when the first method
determines that the previous projection matrix Ur is not
valid anymore and should be updated. In that case, the
second method seeks for partial updating technique for
the projection matrix Ur instead of re-computing Ur from
draft. Such strategy comes from two reasons. First, if we
compute Ur from draft, we need to re-perform the whole
MOR process including solving the new original model at
the sampling points and totally re-doing SVD of the new
sampling response matrix M . This will result in large com-
puting cost. Second, although the projection matrix Ur is not
good enough for current temperature ranges (as determined
in the first method), it still contains important information
for some other temperature ranges (especially around the
former temperature ranges, from which it is computed).
Because it is common that similar temperature distributions
may appear many times during the thermal estimation pro-
cess, throwing away all information of the previous Ur and
generating a completely new projection matrix considering
only current situation is not an ideal choice. To further
increase the efficiency of MOR, we propose a method to
update Ur partially and incrementally as shown next.

To keep the past useful information at updating the pro-
jection matrix, we first calculate a new sampling response

matrix, denoted as Ma, using the updated linear thermal
model generated from the new Taylor expansion points.
Then we append Ma to the previous response matrix M and
get a larger matrix as ML =

[

M Ma

]

. ML contains both
current and previous thermal model information, i.e., ML

is able to reduce both current and previous thermal distri-
butions (Taylor expansion points) induced thermal models
with good accuracy.

Obviously, there are redundant information between M
and Ma. In order to remove such redundancy and generate
a new compact projection matrix that covers important
information of ML, one natural idea is to directly perform
SVD similar to previously introduced steps (15) and (16).
However, this leads to high computing cost.

A partial and incremental SVD update method can be
used instead of the original SVD process to deal with these
problems with much faster speed [31]. At the beginning
of thermal estimation process, we compute the first Ur

using (15) and (16). Additionally, we also keep the truncated
singular value matrix Σr with only first q singular values.
During thermal estimation process, when Ur becomes in-
valid, we use these two matrices Ur and Σr , together with
the new sampling response matrix Ma, to compute a new
diagonal matrix Σr and left singular matrix Ur as shown
in Fig. 3 and presented in the following. Let F = UT

r Ma,

H = Ma − UrF , and QR
QR
←−− H , where

QR
←−− denotes QR

factorization. We simply do SVD on a new boarded diagonal
matrix as

UtΣtVt
SVD
←−−−

[

Σr F
0 R

]

, (24)

and the new UL and ΣL are computed as

UL =
[

Ur Q
]

Ut, ΣL = Σt. (25)

Columns of UL are orthogonal column space basis of
[

Ur Ma

]

, which contain both previous and current
sampling point response information. More importantly,
columns of UL are also sorted in importance, revealed by
the diagonal values in ΣL. As a result, we truncate UL and
ΣL to the order of q, generating the new Ur and Σr matrices
as

Ur ← UL(:, 1 : q), Σr ← ΣL(1 : q, 1 : q), (26)

where we borrowed Matlab-like expression to denote the
truncation process. Practically, in order to further reduce
computing time, we can perform the truncation one step



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XX XXXX 9

C41 C42 C43 C44

C31 C32 C33 C34

C21 C22 C23 C24

C14C13C12C11

Fig. 5: Configuration of the 16-core chip. We put a probe grid
(red square near the center) to demonstrate the transient
temperature and power results.

earlier at the SVD stage in (24). Obviously, the new Ur con-
tains important information of both previous and current
thermal models, with redundancies between them removed.

The flow of the transient leakage-aware thermal analysis
with compact thermal model and specially designed projec-
tion matrix update strategy for one time step is summarized
using flow chart shown in Fig. 4.

5 EXPERIMENTAL RESULTS

In this section, we evaluate both accuracy and efficiency of
the proposed fast full-chip leakage-aware transient thermal
estimation technique.

5.1 Experiment setup

First, we characterize the impact of temperature on device
leakage through HSPICE simulation. Based on the simula-
tion data, we obtain the parameters of model (3) through
curve fitting as shown in Fig. 1. HotSpot 5.02 [15] is used
to build the thermal models of four different chips with
number of cores ranging from 9 to 36. The configuration
of the 16-core chip is shown in Fig. 5 as an example. Sizes of
all tested chips are 10mm×10mm. Power estimator Wattch
[32] is used to generate the dynamic power and instruction
information by running the standard SPEC benchmarks. We
use different power traces from SPEC benchmarks as the
dynamic power traces of different cores on the chips. The
ambient temperature is set to be 40 ◦C.

For thermal models of chips, we partition each core
into 5 × 5 thermal blocks for fine-grained analysis, which
results in n = 912 to 3612 total thermal nodes (including
package thermal nodes) and m = 225 to 900 total on-
chip thermal nodes (excluding package thermal nodes), for
systems with core numbers ranging from 9 to 36. For MOR
in this experiment, we reduce the original models with
orders n = 912 to 3612 into reduced models with much
smaller orders q = 24 to 50, with three sampling points
s1 = 0, s2 = ±0.001j, s3 = ±0.1j. The whole duration of
the transient thermal estimation processes for all tests are
120 s. In order to test the proposed methods under a wide
range of temperatures, we scale the input dynamic power
with different ratios during the 120 s estimation period. For
error control in our proposed methods, we set the threshold
value Errth to be 1 ◦C and the length of temperature region
to be 10 ◦C for all tests unless specially noted.

For accuracy and speed comparison, we first perform
the iteration based thermal estimation (which is accurate
but time consuming as shown in Section 3.3) with extra

fine estimation time step 0.001 s and power trace sampling
interval 0.001 s to serve as the golden accuracy baseline
(called “golden” in short). Then, two existing methods, the
iteration based method (called “ite” in short) and TILTS [16],
are used as the comparison counterparts of the new method.
In order to be fair, all three methods (“ite”, TILTS, and the
new method) share the same time step 0.01 s. They also
share the same power trace which is averaged every 0.01 s
from the power trace used in “golden”.

We compare the proposed method with TILTS because
it speeds up HotSpot by assuming power remains constant
between two adjacent discrete time points. However, TILTS
is not able to deal with the nonlinear relationship between
leakage power and temperature [16]. In addition, TILTS can
be neither improved into an iteration based framework (like
“ite” modified from HotSpot) nor an adaptive Taylor ex-
pansion based framework (like our new method) to handle
leakage’s nonlinear effect. In order to retain its original fast
speed while still considering leakage/temperature depen-
dency, we improve TILTS by linearizing leakage at a single
Taylor expansion point using (9) to generate a new linear
system like (10). Since TILTS can only be built based on
one Taylor expansion point, we choose such point as 80 ◦C
which is the middle point of our test temperature range
(from 40 ◦C to 120 ◦C). Matrices of TILTS with 0.01 s time
step are computed offline using HotSpot simulation with
0.0001 s time step, using procedure presented in [16].

Because our complete method includes three techniques
(Taylor expansion based linear thermal models, applying
MOR to the linear models on the fly, and using incremental
SVD update to MOR), we use three cases, each with one
more new technique than the previous one, to better ana-
lyze our proposed method. Specially, we use “lin only” to
represent the first case, i.e., using Taylor expansion based
linear thermal models only without MOR involved. “lin &
svd batch” is used to represent further applying MOR to the
linear thermal models and totally re-performing SVD to new
sampling response matrix. “lin & svd update” represents
the ultimate form of our newly proposed method, using all
three techniques, i.e., using Taylor expansion based linear
thermal models with incremental SVD update based MOR.
As mentioned previously, we also use “golden” to represent
the iteration based method with extra small simulation time
step (0.0001 s) and “ite” to represent the iteration based
method with the normal simulation time step (0.01 s, shared
by all methods in comparison) in figures and tables.

5.2 Estimation accuracy of the proposed method

We first test the accuracy of the proposed thermal estimation
method. Here we use the 16-core chip as an example for
demonstration and discussion. Results on other chips are
also collected and will be discussed later.

In order to demonstrate the transient thermal estimation
results, we choose one grid near the center of the chip
(marked as the red square in Fig. 5) to be the probe grid.
The probe grid’s input dynamic power during the transient
thermal estimation process is shown in Fig. 6 (a). The
estimated temperature results at the probe grid are shown
in Fig. 6 (b) to analyze the accuracy of different methods.
From Fig. 6 (b), we can see that the curve representing “ite”
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(a) Input dynamic power trace of the central grid of the chip.
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(b) The estimated temperature traces of the central grid by differ-
ent methods for accuracy comparison.
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(c) Temperature error trace of using “lin only” method. Blue
circles represent updating full-sized thermal model with new
Taylor expansion points .
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(d) Temperature error trace of using “lin & svd batch” method.
Blue circles represent updating compact thermal model with
former projector Ur , red stars represent updating both Ur and
compact model when former projector becomes invalid.
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(e) Temperature error trace of using “lin & svd update” method.
Blue circles represent updating compact thermal model with
former projector Ur , red stars represent updating both Ur and
compact model when former projector becomes invalid.

Fig. 6: Accuracy comparison and maximum estimation error
traces of the proposed method on the 16-core chip.
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(b) Temperature error distribu-
tion of using iteration based
method.
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(c) Temperature error distribu-
tion of using TILTS method.
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tion of using “lin only” method.
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(e) Temperature error distribu-
tion of using “lin & svd batch”
method.
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(f) Temperature error distribu-
tion of using “lin & svd update”
method.

Fig. 7: Full-chip power distribution and thermal distribution
estimation errors of the 16-core chip at a random time point.

overlaps with that of the golden result. Besides, the three
curves representing “lin”, “lin & svd batch”, and “lin & svd
update” are very close to the golden curve as well, showing
very small estimation errors. Such observation means that
using Taylor expansion based local linear thermal models
for thermal estimation is accurate (verified by curve “lin”),
and further performing MOR on the linear thermal models
(verified by curve “lin & svd batch”) and even MOR with
incremental SVD update (verified by curve “lin & svd
update”) introduces negligible estimation error. The curve
of TILTS is far away from the golden one for most estimation
time, showing large estimation error. This is because the
linear leakage model of TILTS is only accurate around its
single Taylor expansion point (80 ◦C in this experiment).

We also would like to see how the new method changes
linear models and updates the projection matrix Ur during
the thermal estimation process. So, we plot the maximum
transient temperature errors across the chip for all three
cases in Fig. 6, and also mark the linear model change points
and projection matrix Ur update points in the figure. We can
see that for all three cases, every time the maximum thermal
estimation error is going to violate our pre-defined error
threshold, the linear thermal model is changed by using
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Fig. 8: Frequency responses of 16-core system thermal mod-
els, with input (power) and output (temperature) at the
same thermal node on chip. “Original” represents original
full-size model, “svd batch” and “svd update” represent
reduced models after MOR process with pure SVD and
incremental SVD, respectively.

the new Taylor expansion points, resulting in an immediate
and significant drop in estimation error, as expected. Fur-
thermore, “lin & svd batch” and “lin & svd update” show
slightly larger thermal estimation errors than “lin only”
case. This means MOR did introduce small extra error as
expected, but it can significantly reduce estimation time
as will be shown later. The transient maximum thermal
estimation error waveforms from “lin & svd batch” and “lin
& svd update” are very similar to each other, meaning using
incremental SVD update does not introduce extra error by
further boosting the estimation speed (will be shown later).

In addition to showing the transient results of the probe
grid, we also plot the estimated full-chip temperature error
distribution snapshot at a random time point in Fig. 7. It is
clear that the results given by using iteration method (see
Fig. 7(b)) are very accurate, with temperature error across
the chip to be within 0.12 ◦C. By using local linear thermal
models, the error becomes a little larger, but still very small
with the largest temperature error to be within 0.3 ◦C, as
shown in Fig. 7 (d). Then, by applying MOR (whether
with batch SVD or further introducing the incremental SVD
update technique) to the linear thermal models (see Fig. 7
(e) and (f)), the error of “lin & svd update” method is
almost identical to previous batch SVD one, meaning that
the incremental SVD update technique does not introduce
additional thermal estimation error. Last, the error of TILTS
(see Fig. 7 (c)) is much larger because it can only use one
Taylor expansion point.

5.3 Speed and accuracy data of the proposed method

We have graphically seen from Section 5.2 that the new
method has good accuracy. Now in this part, we show the
speed and accuracy comparison results of the new method
against the iterative method and TILTS, when they are
applied on different multi-core systems. For each multi-core
system, we generate 100 different dynamic power traces
with different combinations of SPEC benchmark power
traces and scale patterns, then perform transient thermal
simulations using different methods on all power traces.

Table 2 records the speed and accuracy data of the new
method comparing with “ite” and TILTS. For estimation
accuracy, “ite” performs best as expected. This is because
“ite” uses the full-sized thermal model and the leakage’s
nonlinear effect is handled accurately at each time step
through iteration. “lin only” gives slightly larger errors than

“ite”, because it is based on the linear approximation of
static power at several Taylor expansion points. Errors given
by “lin & svd batch” method are slightly larger than those of
the “lin only” one, simply because it uses a reduced thermal
model. Accuracy performance of “lin & svd update” is
almost the same as “lin & svd batch”, from which we can
conclude that performing incremental SVD update on the
projection matrix Ur introduces negligible error. We also
show frequency response comparison in Fig. 8. In the figure,
we plot a diagonal element (denote as h(s)) of the transfer
function matrix H(s) = L(Gl+sC)−1B. Since h(s) is a diag-
onal element of the transfer function matrix, it represents the
transfer function of input (power) and output (temperature)
at the same thermal node on chip. The transfer functions
of the reduced models for the same input and output pair
are also plotted. We can see that the frequency responses of
the reduced models given by “lin & svd batch” and “lin &
svd update” overlap each other, showing high accuracy of
the reduction. Finally, TILTS has the worst accuracy perfor-
mance of all methods. This is because TILTS can only have a
single Taylor expansion point (in the experiment, at 80 ◦C),
and is only accurate around that expansion point. TILTS
does have smaller integration-based truncation error than
the proposed method (in the experiment, truncation error
of TILTS equals to estimation with 0.0001 s time step, while
that of the proposed method equals to estimation with 0.01 s
time step). However, for leakage-aware thermal estimation,
error caused by leakage linearization can be much larger
than integration-based truncation errors. As a result, TILTS
has larger final thermal estimation error than the proposed
method, because of its large leakage linearization error.

Now let us look at the speed comparison in Table 2.
First, TILTS and “lin only” are several times faster than “ite”
because they both use linear thermal model to avoid the
time-consuming iteration process. It is noted that “lin only”
is a little faster than TILTS, which is explained as follows.
The essence of TILTS is to perform thermal estimation using
time step equals to power sampling interval to achieve a
faster speed, but still keeps integration-based truncation
error as the same as HotSpot with a smaller time step. In
our experiment, time steps of all methods are set to be the
power sampling interval (0.01 s) as practical settings for
runtime thermal estimation to ensure estimation speed. In
this case, TILTS show no advantage in speed as expected,
because it has no time step advantage. It is even a little
slower than the proposed method, because the proposed
method uses forward and backward substitutions with pre-
factorized sparse LU decomposition, which is almost linear
for sparse matrices, while TILTS needs to compute the matri-
ces from the traditional simulation method first and perform
dense matrix-vector multiplications, with higher complexity
O(n2).

“lin & svd batch” shows even better speedup than “lin
only” method, benefiting from using the smaller reduced
thermal model. “lin & svd update” performs best in estima-
tion speed. It uses the same sized reduced thermal model
as “lin & svd batch” method, but it is much faster. This
is because “lin & svd update” employs incremental SVD
update to generate the new projection matrix Ur , which
greatly reduces the overhead of the MOR process.

In order to see more detailed computing time infor-
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TABLE 2: Accuracy and speed of different thermal estimation methods. Time is reported for 120 s thermal estimation.

core # method model size
temp err power err time speedup speedup

(◦C) (%) (s) vs ite vs TILTS
max avg max avg max avg min avg min avg

9

ite
912

3.84 0.07 6.53 0.12 58.59 56.22 NA NA
TILTS 6.45 0.83 17.49 2.93 13.30 13.26 4.07 4.28 NA

lin only 3.96 0.17 7.52 0.19 8.06 7.67 6.85 7.33 1.64 1.72
lin & svd batch

24
4.49 0.22 7.65 0.37 2.39 0.71 23.67 79.63 5.47 18.66

lin & svd update 4.49 0.22 7.66 0.38 1.77 0.68 32.05 84.39 7.40 19.78

16

ite
1612

4.23 0.07 6.89 0.15 210.57 204.72 NA NA
TILTS 7.05 0.81 16.96 2.72 42.79 41.47 4.81 4.94 NA

lin only 4.63 0.16 7.64 0.18 34.42 29.92 6.10 6.82 1.22 1.39
lin & svd batch

32
4.76 0.19 7.74 0.32 12.29 1.79 16.27 112.57 3.35 22.70

lin & svd update 4.76 0.19 7.74 0.32 5.09 1.15 39.48 174.54 8.11 35.19

25

ite
2512

3.44 0.03 4.88 0.05 466.70 457.55 NA NA
TILTS 7.56 0.85 16.54 2.93 96.04 94.56 4.75 4.84 NA

lin only 4.60 0.10 5.55 0.19 61.91 61.70 7.31 7.42 1.51 1.53
lin & svd batch

40
3.87 0.12 5.61 0.21 15.35 1.32 29.11 345.56 6.19 71.64

lin & svd update 3.87 0.12 5.61 0.21 6.40 1.04 71.87 440.83 14.84 90.62

36

ite
3612

3.14 0.02 4.36 0.03 899.88 874.98 NA NA
TILTS 6.17 0.79 14.73 2.83 194.97 193.62 4.29 4.52 NA

lin only 3.43 0.08 4.87 0.14 156.64 148.82 5.39 5.89 1.24 1.30
lin & svd batch

50
3.59 0.11 5.14 0.19 39.31 2.61 22.39 336.69 4.83 72.80

lin & svd update 3.59 0.11 5.14 0.19 13.17 1.49 66.82 589.49 14.43 127.28

TABLE 3: Detailed computing time analysis with the 16-core system case. “model update” represents thermal model
update, “Ur update” means re-generating Ur , “analysis time” stands for pure transient simulation time.

method
model update Ur update analysis time total time

count time (s) count time (s) (s) (s)
max avg max avg max avg max avg max avg max avg

lin only 20 7.33 7.26 2.66 NA 28.10 27.26 34.42 29.92
lin & svd batch 32 17.07 0.23 0.11 14 1.12 11.28 0.99 0.78 0.69 12.29 1.79

lin & svd update 32 17.00 0.23 0.11 14 1.12 4.27 0.36 0.71 0.68 5.09 1.15

mation other than the total time, we perform an in-depth
analysis with the 16-core system case. We divide the total
computing time into three components: “model update”,
“Ur update”, and “analysis”. “model update” represents
updating the thermal model when the Taylor expansion
points become invalid (also count in MOR process using
previous projection matrix Ur for “lin & svd batch” and
“lin & svd update” cases). “Ur update” means re-generating
the projection matrix Ur in MOR when it becomes invalid.
“analysis time” stands for pure transient simulation time
using thermal models, excluding the thermal model change
time (counted in “model update”) and projection matrix re-
computing time (counted in “Ur update”). The results are
show in Table 3. We can see that “lin & svd batch” and
“lin & svd update” are much faster than “lin only” on both
“model update” and “analysis time” parts. The speedup
from “analysis time” is obviously due to the fact that the
former two both use reduced thermal models in transient
simulation. While the “model update” speedup is simply
because the LU decompositions of the former two are based
on the reduced thermal model matrices. For “Ur update”
time, “lin & svd update” shows great advantage than “lin
& svd batch”. Such benefit is gained by the incremental
SVD update technique introduced in Section 4.4.3. For “lin
& svd batch” and “lin & svd update”, their “Ur update”
time will be significant when the update count is large,
leading to a slow down in estimation speed. This extreme
case happens when the chip temperature changes frequently
and drastically in the estimation duration. But even for
such worst case in our 100 tests, “lin & svd update” still
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Fig. 9: Accuracy and computing cost analysis of using dif-
ferent temperature region lengths, with “lin & svd update”
method on the 16-core chip.

gains around 39× and 8× speedup against “ite” and TILTS,
respectively, as shown in Table 2.

5.4 Sensitivity analysis of Taylor expansion tempera-

ture region length

In this section, we analyze the impact of Taylor expansion
temperature region length on the accuracy and speed of the
new thermal estimation method.

We perform thermal estimation using “lin & svd update”
on the 16-core system, with different temperature region
lengths ranging from 1 ◦C to 80 ◦C. The accuracy and com-
puting cost results are shown in Fig. 9. We see that the esti-
mation error is smaller with shorter region length, because
more updates of thermal model and projection matrix are
performed. However, if the region length is shorter than
10 ◦C, decreasing region length further has negligible con-
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tribution in estimation accuracy, meaning that each linear
approximation of leakage current can approximately cover
around 10 ◦C temperature range. On the computing time
side, as shown in Fig. 9, very short temperature region
length leads to large computing time cost, especially when
the length is shorter than 10 ◦C, because a lot of thermal
model and projection matrix updates are performed. When
the region length increases from 10 ◦C to 40 ◦C, there is a
small time cost increase, because larger region length results
in lager estimation error and leads to a little more updates.
Lastly, when the temperature region length becomes very
long (for example, around 80 ◦C), the time cost will decrease
again, because node temperature hardly gets out of this
long range to trigger updates. However, since the thermal
estimation accuracy will be poor for such long region length,
it is a bad choice in general unless extremely fast speed
is required. In general, we see that the temperature region
length affects the trade-off between estimation accuracy and
computing cost, so it needs to be chosen according to the
desired balance point of accuracy and cost.

6 CONCLUSION

In this article, we have demonstrated a new fast full-
chip transient thermal estimation method. The new method
uses Taylor expansion based local linearization technique to
avoid the time-consuming iterations used in the traditional
thermal analysis methods. A new linear thermal model is
also formulated for easy transient simulation of temper-
ature and static power. In order to further increase the
thermal estimation speed, a specially designed model order
reduction method with partial and incremental SVD update
technique has been integrated into the estimation frame-
work to generate local compact thermal models. The new
method has been tested on several multi-core chips with
SPEC benchmarks. The results show that the new method
is able to accurately estimate full-chip transient temperature
distribution. On different chips with core number ranging
from 9 to 36, it achieved 85× to 589× speedup in average
against traditional iteration based method, with average
thermal estimation error to be around 0.2 ◦C.
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