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Abstract—Leakage power is becoming significant in new gen-
eration IC chips. As leakage power is nonlinearly related to
temperature, it is challenging to manage the thermal behavior of
today’s multi-core systems, since thermal management becomes
a nonlinear control problem. In this article, a new predic-
tive dynamic thermal management (DTM) method with neural
network thermal model is proposed to naturally consider the
inherent nonlinearity between leakage and temperature. We start
with analyzing the problems of using recurrent neural network
(RNN) to build the nonlinear thermal model, and point out
that there is exploding gradient induced long-term dependencies
problem, leading to large model prediction errors. Based on this
analysis, we further propose to use echo state network (ESN),
which is a special type of RNN, as the leakage-aware nonlinear
thermal model. We theoretically and experimentally show that
ESN achieves much higher accuracy by completely avoiding the
long-term dependencies problem. On top of this nonlinear ESN
thermal model, we propose a novel model predictive control
(MPC) scheme called ESN MPC, which uses iterative steps to
find the optimal future power recommendations for thermal
management. Being able to consider the leakage-temperature
nonlinear effects and equipped with advanced control technique,
the new method achieves an overall high quality temperature
management with smooth and accurate temperature tracking.
Experimental results show the new method outperforms the
state-of-the-art leakage-aware multi-core DTM method in both
temperature management quality and computing overhead.

Index Terms—Dynamic thermal management, leakage power,
multi-core, echo state network, model predictive control.

I. INTRODUCTION

Power density keeps increasing with technology scaling,

causing severe thermal related problems in high performance

multi-core systems, including system reliability and perfor-

mance degradations [1], [2], [3], [4]. In order to find eco-

nomical and efficient methods to solve the high temperature

issue and improve both system performance and reliability, re-

searchers have proposed dynamic thermal management (DTM)

methods, which control the thermal behavior of multi-core

systems by management actions including task migration [5],

Manuscript received XX, XXXX; revised XX, XXXX. This research is
supported in part by National Natural Science Foundation of China under
grant No. 61404024, in part by the Fundamental Research Funds for the
Central Universities under grant No. ZYGX2016J043, in part by the Scientific
Research Foundation for the Returned Overseas Chinese Scholars, State
Education Ministry.

H. Wang, X. Guo, C. Zhang, and H. Tang are with State Key Lab-
oratory of Electronic Thin Films and Integrated Devices, University of
Electronic Science and Technology of China, Chengdu, 610054 China, and
with School of Electronic Science and Engineering, University of Electronic
Science and Technology of China, Chengdu, 610054 China. E-mail: wang-
hai@uestc.edu.cn (Hai Wang).

S. X.-D. Tan is with Department of Electrical and Computer Engineering,
University of California, Riverside, CA 92521 USA.

Y. Yuan is with School of Automation Engineering, University of Electronic
Science and Technology of China, Chengdu, 610054 China.

[6], [7], [8], [9], [10], dynamic voltage and frequency scaling

(DVFS) [11], [12], [13], [14], [15], etc. To guide these

management actions, modern DTM methods are employed

with advanced control schemes. For example, model predictive

control (MPC) using linear thermal models was proposed to

provide system power recommendation [16], [17], [18], [19].

With the help of MPC, the management actions such as DVFS

and task migration can be correctly executed.

However, most DTM methods do not consider leakage

power properly, resulting in less accurate thermal manage-

ment [20]. For current high performance systems manufac-

tured using new technology, leakage power, which even ac-

counts for over 50% of the total power consumption, cannot

be neglected anymore [21]. To make matters worse, leak-

age power depends on temperature exponentially [22], [23],

forming a positive feedback between power and temperature:

temperature rise will cause the leakage power increase, and

will in turn cause the temperature to rise further, which may

lead to thermal runaway in the worst case. Therefore, the

leakage power induced thermal problem has already become

one of the most important limiting factors of IC system

performance today.

The major challenge of considering leakage power in

DTM lies in building a leakage-aware thermal model which

is accurate and works well with DTM methods. It comes

from the fact that most DTM methods require linear thermal

models. However, the accurate leakage-aware thermal model

is inherently nonlinear as aforementioned. To mitigate this

problem, some approximation based thermal models consid-

ering leakage power were proposed, including explicit linear

approximation models [24], [25], [26], [27], [28], implicit

linear approximation models by system identification [29],

[30], [31], [32], piecewise linear approximation models [33],

[34] and polynomial approximation models [20]. However, all

these models are problematic when integrated into DTM as

will be discussed in Section II.

In this article, we propose a new leakage-aware DTM

method. In order to handle the nonlinear dependency between

leakage power and temperature accurately, we propose to use

neural network based control scheme for DTM. After analyz-

ing the problems in applying recurrent neural network (RNN)

to the leakage-aware DTM, we find echo state network (ESN)

not only considers the inherent nonlinearity between leakage

and temperature but also avoids the long-term dependencies

problem in normal RNN. Then, MPC specially designed for

this ESN thermal model is introduced to calculate the future

power recommendations for the thermal management. Being

able to consider the leakage-temperature nonlinear effects and

equipped with advanced control technique, the new method is
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able to achieve an overall high quality temperature manage-

ment with smooth and accurate temperature tracking.

The remaining parts of this article are organized as follows.

In Section II, we review some relevant researches in DTM,

and present the motivation and major contributions of this

work. In Section III, we introduce the leakage power modeling

and thermal modeling techniques, which serve as the basic

knowledge of leakage-aware DTM. Then, we demonstrate

the new leakage-aware DTM using neural network based

control in Section IV. The experimental results showing the

performance of the new method are presented in Section V.

Finally, Section VI concludes this article.

II. RELATED WORK AND NEW CONTRIBUTIONS

In this section, we briefly review some relevant researches

in DTM, leakage-aware thermal modeling, and leakage-aware

DTM for multi/many-core microprocessors.

On the DTM side, many methods have been proposed

to improve the thermal related performance of multi/many-

core systems [35], [36] and data centers [37]. DTM method

targeting CPU-GPU co-optimization was introduced in [38]

to improve mobile gaming performance. Palomino et al. pro-

posed adaptive temperature optimization [39] and approximate

computing [40] based DTM methods for video coding process.

Machine learning based DTM method for HEVC encoding

was introduced in [41]. DTM method which improves both

the performance and reliability of the 3-D ICs was recently

proposed in [42].

The DTM methods above are usually combined with man-

agement actions like task migration and DVFS. Task mi-

gration switches tasks among different cores in multi/many-

core systems to lower the peak temperature of the chip [5],

[6], [7], [8], [9], and can also be used to lower the energy

consumption in heterogeneous multi-core systems [10]. DVFS

controls voltage and operating frequency to adjust the heat

dissipation of the chip [11], [12]. It was also applied to dark

silicon systems to determine the voltage or frequency levels

of the active cores [13], [14], which was further improved

by introducing the thermal safe power budget (TSP) [43] and

dynamic power budget (GDP) [44]. Works combining task

migration and DVFS were presented in [45], [46], [15], [19].

The above management actions should be guided by control

schemes. As a result, advanced control methods using MPC

with linear models were proposed to improve the management

quality [16], [17], [18], [19], but they failed to consider the

nonlinearity between leakage and temperature.

In order to handle the nonlinearity between leakage and

temperature in DTM and thermal simulation, some leakage-

aware thermal models have been proposed. These models

can be basically classified into three categories: linear ap-

proximation models, piecewise linear approximation models,

and polynomial approximation models. Linear models which

approximate the nonlinearity between leakage and temperature

linearly were presented in [24], [25], [26], [27], [28]. System

identification based linear thermal models were also proposed

in [29], [30], [31], [32], which implicitly linearize the leakage.

However, these linear models suffer from low accuracy issue

caused by the large linear approximation error. Piecewise

linear approximation models were proposed to improve the

accuracy of the linear models [33], [34]. However, they

can hardly be integrated into an advanced control scheme

due to their complex structures for implementation, so no

piecewise linear approximation model based DTM has ever

been proposed. Some researchers proposed polynomial based

models to approximate the nonlinearity between leakage and

temperature [20]. Although this complicated model improves

accuracy, it can only be applied to thermal management for

single-core systems, because its polynomial is scalar function

based [20]. In recent years, some learning-based thermal

modeling approaches have been proposed [47], [48], which

have potential in leakage consideration.

There are very few existing leakage-aware DTM methods

based on the leakage-aware thermal models. The method

in [25] minimizes the maximum temperature for periodic hard

real-time systems using linear leakage-aware thermal model.

A similar linear model is also used in [45], but without

advanced control scheme. In addition to the DTM methods

mentioned above with linear model, a DTM method with

quadratic polynomial based leakage-aware thermal model was

introduced in [20]. However, as mentioned before, this DTM

method can only be used for single-core systems instead of

multi-core systems.

The discussions above reveal that it is difficult to design an

accurate leakage-aware DTM method for multi-core systems.

In this work, we resolve this problem by proposing a novel

leakage-aware DTM with neural network based nonlinear

thermal model. The major contributions of this work are

summarized as follows:

• In order to handle the nonlinearity between leakage and

temperature, we propose to build an RNN based thermal

model for the multi-core system. Since RNN is a non-

linear model itself, the leakage induced nonlinearity can

be accurately modeled with proper RNN model structure

and training process.

• We analyze the problems of using RNN based thermal

model in leakage-aware DTM. Specifically, with both

theoretical analysis and experimental evidence, we reveal

that there is significant exploding gradient induced long-

term dependencies problem for normal RNN model in

this application. Because of this, normal RNN model

shows large temperature estimation error, thus cannot be

used for leakage-aware DTM.

• Based on the analysis above, we propose to use echo

state network (ESN), which is a special type of RNN, for

leakage-aware thermal modeling. We show theoretically

and experimentally that ESN is able to avoid the explod-

ing gradient induced long-term dependencies problem

and thus enables the new leakage-aware nonlinear DTM.

• We specially designed an ESN based model predictive

control (MPC) framework called ESN MPC for the

leakage-aware DTM problem. It contains additional leaky

units to better deal with the long-term dependencies

problem [49], [50] and ignores the high order Taylor

expansion terms to reduce computing overhead compared

with the method in [51]. The detailed steps of integrating

the ESN based leakage-aware thermal model into the

specially designed MPC is demonstrated. The ESN MPC

framework is able to provide accurate dynamic power

adjustment recommendations for the multi-core systems.

• We have experimentally compared the ESN based thermal
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model with the recently proposed ANN based thermal

model. Our numerical results show that the ESN based

thermal model is more accurate than the ANN based

thermal model, because of its superior ability in dynamic

system modeling thanks to its recurrent structure.

• We have also experimentally compared the ESN MPC

based DTM method with one state-of-the-art linear leak-

age model based multi-core DTM method. Our numerical

results show the new method outperforms the state-of-

the-art leakage-aware multi-core DTM method in both

management quality and computing overhead, because it

handles nonlinearity in a natural and efficient way. Fur-

thermore, compared with the existing polynomial model

based method, the new method can easily handle multi-

core systems without restriction.

III. BACKGROUND

In this section, the leakage power model used in this work

will be introduced first. After that, we briefly review the

traditional leakage-aware thermal modeling techniques, and

show their problems for DTM application.

A. Modeling of the leakage power

It is well known that, the total power of chip, denoted as

p, is composed of dynamic power and leakage power (which

is also called static power). The dynamic power, denoted as

pd, depends on the activity of the chip, and thus can be easily

estimated by performance counter based methods [52], [53],

[54]. Unlike dynamic power, leakage power ps is independent

of the chip’s activity and caused by leakage current Ileak as

ps = VddIleak. (1)

The values of leakage power are harder to obtain than

dynamic power, mainly because of the special temperature

sensitivity caused by leakage current. IC leakage current

has various components, including subthreshold current, gate

current, reverse-biased junction leakage current and so on.

Among these components, subthreshold current Isub and gate

leakage current Igate are the dominant parts. As a result, we

can ignore other parts of leakage and get the leakage current

approximation [55], [56], [57] as

Ileak = Isub + Igate. (2)

The subthreshold current is modeled in the commonly ac-

cepted MOSFET transistor model BSIM 4 [58] as (also apply

VDS ≫ vT [56])

Isub = KvT
2e

VGS−Vth
ηvT

(

1− e
−VDS

vT

)

≈ KvT
2e

VGS−Vth
ηvT ,

(3)

where vT =
kTp

q
is the thermal voltage and Tp is a scalar

representing temperature at one place, 1 K and η are process

related parameters, and Vth is the threshold voltage.

While the subthreshold current is highly related to temper-

ature, the gate current Igate, which results from tunneling

between the gate terminal and the other three terminals,

1Tt introduced latter in equation (4) is a vector representing temperatures
at multiple positions
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Fig. 1: Comparison of leakage of a PTM-MG 7 nm FinFET

from HSPICE simulation with its curve fitting result using

equation (3).

does not depend on temperature and can be considered as a

technology-dependent constant.

Apparently, the leakage current has a complex relationship

with temperature. In this work, we use equations (1), (2), and

(3) to model the leakage power considering such relationship.

The parameters of leakage current can be obtained by curve

fitting using HSPICE simulation data. In order to see the accu-

racy of the model used, Fig. 1 shows an HSPICE simulation

result of leakage using 7 nm PTM-MG FinFET models for

high-performance applications (7 nm PTM-MG HP NMOS

and HP PMOS) provided online at [59], and its curve fitting

result using approximate leakage model. From the figure, we

can see that the leakage power model has high accuracy for

all common temperatures of IC chips.

We conclude that the leakage power distribution depends

mainly on the temperature distribution for a certain chip with

constant physical parameters. Since temperature also depends

on power, in order to view the whole picture, traditional

thermal model of IC chip is used to describe temperature’s

dependency on power as shown next.

B. Traditional leakage-aware thermal modeling and its prob-

lems

In order to calculate the full-chip temperature distribution,

a thermal model that links the power and temperature is

needed. Traditionally, to perform thermal analysis for an IC

chip, the chip and its package are divided into multiple blocks

called thermal nodes, with the partition granularity determined

by accuracy requirements. Then the thermal resistances and

capacitances among these thermal nodes are computed, which

model the thermal transport and power response behaviors.

For example, for a n-core system with m total thermal

nodes, we can generate its thermal model as

GTt(t) + C
dTt(t)

dt
= BP (Tt, t),

Y (t) = LTt(t),
(4)

where Tt(t) ∈ R
m is the temperature vector (distinguished

from Tp, which is a scalar representing temperature at only

one place), representing temperatures at m places of the chip

and package; G ∈ R
m×m and C ∈ R

m×m contain equivalent

thermal resistance and capacitance information respectively;

B ∈ R
m×n contains the power injection topology information;

P (Tt, t) ∈ R
n is the power vector with power dissipations

of n cores, including both dynamic power vector Pd and

leakage power vector Ps, i.e., P (Tt, t) = Ps(Tt, t) + Pd(t),
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reminding that leakage power Ps(Tt, t) is actually a function

of temperature Tt modeled using equations (1), (2), and (3);

Y (t) ∈ R
n is the output temperature vector of n cores;

L ∈ R
n×m is the corresponding output selection matrix which

selects the n core temperatures from Tt(t). For the detailed

structure of the thermal model, please refer to [45], [60].

The leakage power Ps(Tt, t + h) is a nonlinear function

of current temperature Tt(t + h), leading to the fact that we

need Tt(t+ h) to compute Ps(Tt, t+ h) while we also need

Ps(Tt, t + h) to compute Tt(t + h), similar to the famous

chicken or the egg causality dilemma. As a result, Tt(t + h)
cannot be calculated directly.

Iteration based method has been proposed to compute

the temperature and leakage power by providing an initial

guess [61], [62], [34]. Although this method is pretty ac-

curate, it cannot be used in DTM because it is extremely

time consuming. In this work, we use the iteration based

thermal estimation method as the accuracy golden baseline

(called ”golden” in short) and it also serves as the multi-core

system plant. Detailed steps of the iteration based method are

discussed in our previous work [34].

In order to find a practical leakage-aware thermal model

for DTM, researchers proposed to approximate the nonlinear

function (3) using linear function, piecewise linear function,

or simple polynomials. But all these methods show limitations

in DTM as discussed in Section II.

IV. LEAKAGE-AWARE DTM USING ECHO STATE NETWORK

BASED PREDICTIVE CONTROL

As discussed in the previous sections, there are very few

leakage-aware DTM works for multi-core systems. In this

section, we present a new leakage-aware DTM method using

a neural network based nonlinear thermal model and nonlinear

model predictive control.

This section is organized as follows. First, in Section IV-A,

we analyze the performance of the general RNN structure

based thermal model, and point out it does not work well

for leakage-aware DTM because of the exploding gradient

induced long-term dependencies problem. Then, in order to

avoid such problem, we propose to use ESN model, which is

an RNN with special structure, for leakage-aware DTM. The

structure and training of ESN for thermal management appli-

cation are presented in Section IV-B. Finally, in Section IV-C,

we demonstrate the detailed steps of integrating the ESN based

thermal model into the new nonlinear ESN MPC framework

to perform leakage-aware DTM.

A. Leakage-aware thermal modeling using RNN and its long-

term dependencies problem

1) RNN based leakage-aware thermal model: RNN is a

deep network specialized in sequence modeling. It is invented

to deal with data in vector sequence form by the machine

learning community [50]. Because dynamic systems produce

the output vector sequence from a given input vector sequence,

RNN can also be used as a black box model for dynamic

systems, especially for nonlinear dynamic systems [63]. In

addition, RNN has a simple structure, which makes it easier

to be integrated into an advanced control framework than some

other complex neural networks.

Fig. 2: A simple RNN architecture, whose recurrence is the

feedback connection from the output to the hidden layer. It

has the problem of learning long-term dependencies when it

is used as the thermal model for leakage-aware DTM.

In order to improve DTM quality of multi-core systems by

accurately considering the nonlinearity between the leakage

current and temperature, it is natural to think of using RNN as

the leakage-aware thermal model. Although RNN is powerful

in many applications, we show in this work that it is difficult

to train the normal RNN for leakage-aware DTM problem

because of its problem of learning long-term dependencies in

the training process [64], [50]. With the problem of learning

long-term dependencies, the accuracy of the RNN model will

suffer, especially for an RNN that requires a long sequence to

train as in leakage-aware DTM.

Here we use a simple RNN shown in Fig. 2 as an example

to demonstrate this problem. Because RNN can naturally con-

sider the nonlinearity between leakage power and temperature,

we just need dynamic power Pd(k) as the input and leakage

power Ps(k) should be handled automatically inside RNN.

Tr(k) is the output temperature of RNN, containing the on-

chip temperatures only.2 xr(k) is the state, which is also called

the hidden unit. In addition, there are matrices Ar, Dr and

Er, representing the weighted connections between input-to-

hidden, output-to-hidden and hidden-to-output, respectively,

which are called weight matrices. This RNN outputs the on-

chip temperatures Tr(k) at each time step, and has recurrent

connections from the output at one time step to the hidden

units at the next time step. Please note that we can put more

than one hidden unit at each time step, in order to increase

the model capacity.

Assume the multi-core system has n cores (Tr(k) ∈ R
n),

n power sources (Pd(k) ∈ R
n), and there are q hidden units

(xr(k) ∈ R
q) used at each time step, then this simple RNN

architecture can be written as

xr(k) = f(ArPd(k) +DrTr(k − 1) + α),

Tr(k) = Erxr(k) + β,
(5)

where Ar ∈ R
q×n is specifically called input weight matrix,

Dr ∈ R
q×n is called recurrent weight matrix, and Er ∈ R

n×q

is called output weight matrix. The activation function f is

an element wise nonlinear function. Usually, f is chosen as

logistic sigmoid function f(k) = ek

ek+1
or hyperbolic tangent

2We do not need the explicit package temperatures in most applications. If
certain package temperatures are explicitly needed, we can simply add them
to Tr(k).
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function f(k) = tanh(k) in RNN. α ∈ R
q and β ∈ R

n are

the bias vectors.
2) Long-term dependencies problem in RNN based leakage-

aware thermal model: The RNN model has to be trained

before usage, i.e., the proper values of its weight matrices

(Ar, Dr, Er), which lead to an accurate RNN for the specific

application, need to be determined in the training process.

Assume we have a training set comprises input (dynamic

power vector trace) and output (system temperature vector

trace) samples of nk time steps obtained using the slow

but accurate golden iteration based leakage-aware thermal

estimation method [61], [62]. Let us denote Ttr(k) as the

output temperature from training samples and Tr(k) as the

output temperature from RNN model at time k. In order to

get an accurate RNN model, we need to make the output

temperature Tr(k) of RNN as close as possible to the training

temperature data Ttr(k), by tuning the RNN weight matrices.

As a result, the goal of the training process is to minimize the

following cost function

J =
∑

1≤k≤nk

‖Ttr(k)− Tr(k)‖2. (6)

To minimize the cost function J , our task is to search for the

weight matrices (Ar, Dr, Er) which reduce the cost function

gradient ∇J to zero in an iterative way. However, long-term

dependencies problem may occur during the gradients compu-

tation process, leading to RNN model accuracy degradation,

as explained in the following.

Here, we illustrate such long-term dependencies problem by

computing the derivative of the cost ψ(k) := Ttr(k)−Tr(k) ∈
R

n at time k in equation (6) with respect to a weight wij in

the weight matrices as an example:

∂ψ (k)

∂wij

=
∑

1≤l≤k

(

∂ψ (k)

∂xr (k)

∂xr (k)

∂Tr (l)

∂T+
r (l)

∂wij

)

, (7)

where
∂ψ (k)

∂xr (k)

∂xr (k)

∂Tr (l)

∂T+
r (l)

∂wij

measures how wij at time l

affects the ψ(k) at time k,
∂T+

r (l)

∂wij

is the “immediate” partial

derivative by taking Tr(l − 1) as a constant, and

∂xr (k)

∂Tr (l)
=

∂xr (k)

∂Tr (k − 1)





∏

l+2≤i≤k

∂Tr (i− 1)

∂xr (i− 1)

∂xr (i− 1)

∂Tr (i− 2)





=





∏

l+2≤i≤k

diag(f ′(zr(i)))DrEr





· diag(f ′(zr(l + 1)))Dr,
(8)

where zr(i) is defined as zr(i) = ArPd(i) +DrTr(i − 1) +
α only to simplify notation and diag is an operator which

converts a vector into a diagonal matrix.

The problem of learning long-term dependencies can be

induced by either vanishing gradient or exploding gradient.

In order to analyze the long-term dependencies problem and

distinguish its cause, we mainly focus on the multiplication
∏

l+2≤i≤k diag(f
′(zr(i)))DrEr in equation (8). Let us define

κi = ‖diag(f ′(zr(i)))DrEr‖2, which is also the largest

singular value of diag(f ′(zr(i)))DrEr. Then, if κi < 1
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Fig. 3: The largest singular value κi of diag(f ′(zr(i)))DrEr,

showing exploding gradient problem because κi > 1. This

RNN model has three hidden layers with 10 neurons in each

layer. All other RNN models show similar results.

TABLE I: The absolute training and validation errors (in ◦C)

of normal RNN based leakage-aware thermal model. Errors

are large for all RNNs with different configurations, due to the

exploding gradient induced long-term dependencies problem.

Neuron # in layer Train err Val err
l1 l2 l3 l4 max avg max avg

10 0 0 0 49.2 22.4 65.2 42.6
20 0 0 0 37.5 15.7 43.4 21.3
5 5 0 0 23.2 10.9 30.5 13.1
10 10 0 0 20.6 9.0 22.7 10.3
20 20 0 0 18.3 7.4 19.4 8.6
5 5 5 0 19.5 7.9 20.2 9.5
10 10 10 0 17.5 7.2 18.2 8.1
15 15 15 0 17.3 6.7 19.3 8.7
20 20 20 0 17.5 6.5 19.7 9.3
5 5 5 5 17.9 7.4 19.5 8.5
10 10 10 10 17.1 6.4 20.4 9.7

and k ≫ l, the value of ‖
∏

l+2≤i≤k diag(f
′(zr(i)))DrEr‖2

will go to 0, indicating the vanishing gradient induced long-

term dependencies problem. Similarly, the exploding gradient

induced long-term dependencies problem may happen when

κi > 1 and k ≫ l. More discussions on the difficulty of

learning long-term dependencies can be found in [65], [66],

[64], [50].

When encountering exploding gradient or vanishing gradi-

ent problems, it is difficult for RNN to learn the weights in

the training process, which will lead to a large model error.

Unfortunately, in the leakage-aware thermal modeling, there

is a severe exploding gradient problem. We can see this by

observing the value of κi shown in Fig. 3 for one RNN

example where there are three hidden layers with 10 neurons

in each layer. In the figure, κi is larger than 1 for all training

time k, indicating exploding gradient problem in this case.

We remark that similar results are observed in all other tested

RNN models with different sizes and configurations.

To see the disastrous results of this exploding gradient

induced long-term dependencies problem, we built leakage-

aware RNN thermal models with different sizes and hidden

layer configurations using 10000 samples obtained from the

golden iteration based method with sampling interval to be

1 s. Then, we use other 7000 samples to verify the accuracy

of this model. The training and validation accuracy results are

collected in Table I. Results shown in the table reveal that no

matter how we adjust the model sizes and hidden layer con-
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figurations, RNN models have relatively large training error

and validation error. Even the smallest average training and

validation errors are larger than 6 ◦C and 8 ◦C, respectively.

This means that normal RNN model is not suitable for building

leakage-aware thermal model due to the exploding gradient in-

duced long-term dependencies problem in the training process.

In the next part, we will show this problem can be solved by

using echo state network (ESN), which has a special RNN

structure.

B. ESN based leakage-aware thermal model for multi-core

systems

From Section IV-A2, we know that normal RNN has diffi-

culty in learning long-term dependencies to build an accurate

leakage-aware thermal model for DTM due to the exploding

gradient problem in training process. In this section, we show

that echo state network (ESN) [67], [49], [68], which is an

RNN with special structure, is able to avoid this problem.

1) RNN structure selection for leakage-aware thermal mod-

eling: By analyzing the difficulty in learning long-term de-

pendencies in Section IV-A2, we know the cause of such

difficulty is that the gradients (like the one in equation (7)),

which propagate over many stages through time, tend to either

vanish or explode when we train the recurrent weight matrix.

Specifically, for the application of leakage-aware thermal

modeling, there is severe exploding gradient induced long-

term dependencies problem as shown in Section IV-A2.

In order to avoid the long-term dependencies problem in

RNN, many variants of RNN were proposed with different

structures. One famous variant is call the long-short term

memory (LSTM) network [69], [70]. However, LSTM has

a complex long-short term memory structure, which makes

it difficult to be integrated into the DTM framework. Fur-

thermore, LSTM was proposed to mitigate the vanishing

gradient induced long-term dependencies problem, so it does

not address the exploding gradient induced problem [64],

which happens in leakage-aware thermal modeling as shown

in Fig. 3.

On the other hand, echo state network (ESN) can avoid both

vanishing gradient and exploding gradient induced long-term

dependencies problems by learning only the output weight ma-

trix in training. Because the long-term dependencies problems

happen when we train the weights among hidden neurons

using backpropagation, which causes gradients to propagate

over many stages (as shown in Section IV-A2). ESN prevents

this problem by avoiding the backpropagation based training

of the weights among hidden neurons. To be specific, the

input and recurrent weight matrices (which contain weights

among hidden neurons) of ESN are created randomly and

fixed, meaning they are not trained using backpropagation.

Instead, only the output weight matrix needs to be trained

using simple linear regression as will be shown later. Since

there is no backpropagation needed in training (but only

a linear regression), there is no gradient propagation and

vanishing/exploding gradient induced long-term dependencies

problem in ESN. As a result, we can use ESN as the leakage-

aware thermal model, which should be able to achieve high

thermal prediction accuracy in DTM without the difficulty in

learning long-term dependencies.

Fig. 4: The ESN architecture of an n-core system. Arrows with

solid lines: fixed weights which are created randomly; arrows

with dashed lines: output weights which need to be trained.

Pdi
(k) is the dynamic power of the i-th core and Ti(k) is the

temperature of the i-th core.

2) ESN architecture for leakage-ware thermal model-

ing: The ESN architecture used for our thermal mod-

eling is shown in Fig. 4. In the figure, Pd(k) =
[Pd1

(k), Pd2
(k), . . . , Pdn

(k)]T is the vector of dynamic

power injections of the multi-core system, and T (k) =
[T1(k), T2(k), . . . , Tn(k)]

T contains the output on-chip tem-

peratures. All recurrent connections of ESN are located be-

tween hidden units. The weights of the input-to-hidden units

connections and hidden-to-hidden units connections are ran-

domly assigned and fixed, which are shown as arrows with

solid lines in Fig. 4. The weights of hidden-to-output units

connections and input-to-output units connections should be

determined in the training process, which are shown as arrows

with dashed lines in Fig. 4.

ESN shown in Fig. 4 can be also written into the state space

like formulation similar to the normal RNN in equation (5).

Assume the multi-core system has n cores (T (k) ∈ R
n), n

dynamic power sources (Pd(k) ∈ R
n), and there are q hidden

units (x(k) ∈ R
q) in the ESN, then the ESN based leakage-

aware thermal model can be written as

x(k) = (1− γ)x(k − 1) + γf(APd(k) +Dx(k − 1)),

T (k) = Ex(k) +HPd(k),
(9)

where γ is the parameter of the linear self-connection from

hidden units x(k − 1) to x(k) (such hidden units are called

leaky units). When γ is close to 0, the information for a

long time in the past can be remembered by ESN. When γ
approaches 1, the past information is quickly discarded [50].

This is a simple and quite effective strategy used in ESN to

deal with long-term dependencies problem [49]. Input matrix

A ∈ R
q×n and recurrent connection matrix D ∈ R

q×q are

randomly generated and cannot be changed in the training

process. Matrices E ∈ R
n×q and H ∈ R

n×n represent the

weighted connections between hidden-to-output and input-

to-output, respectively, whose values will be learned in the

training process presented next.

3) Training of the leakage-aware ESN thermal model:

In this part, we introduce the process of training the ESN

based thermal model of multi-core systems. ESN training is

relatively simple: we only need to train the output matrix,
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Fig. 5: Framework of ESN MPC based leakage-aware DTM

for multi-core systems. Extended Kalman Filter is used for

state estimation. The blue phrases in parentheses are the tools

used to implement the specific blocks in our experiment which

will be presented in Section V.

denoted here as Wout = [E,H] ∈ R
n×(q+n), using linear

regression as shown below.

Assume we have a training set with training input se-

ries Ptr(k) and training output series Ttr(k), where k =
1, 2, . . . , nk. By injecting the power input data Ptr(k) into

the ESN model (9), we can compute the state series x(k),
k = 1, 2, . . . , nk easily because both A and D are known

constant matrices.

Then, we collect the state series and training input series as

state collection matrix S ∈ R
nk×(q+n),

S =

[

x(1), x(2), . . . , x(nk)
Ptr(1), Ptr(2), . . . , Ptr(nk)

]T

.

Similarly, we collect training output series Ttr(k) as output

collection matrix O ∈ R
nk×n,

O = [Ttr(1), Ttr(2), . . . , Ttr(nk)]
T .

From equation (9), we have OT =WoutS
T , which is a linear

function. As a result, the trained output matrix Wout can be

easily computed as

Wout = (S†O)T , (10)

where S† represents the pseudo-inverse of S.

Since we get the trained ESN model without using gradient

propagation (which may cause the gradient to vanish or

explode), the training of ESN successfully avoids the long-

term dependencies problem. In this way, we obtain a trained

ESN based leakage-aware thermal model, which should be

accurate and can be integrated into MPC for DTM as shown

next in section IV-C.

C. Leakage-aware DTM with ESN MPC for multi-core sys-

tems

Model predictive control (MPC) has a long history in the

process industrial field. In recent years, MPC has been used

for DTM of multi-core systems [17], [18], [19]. However,

these methods are unable to consider the nonlinearity between

leakage and temperature, resulting in significant management

error for systems with high leakage ratio. In Section IV-B,

we have shown the new ESN based compact thermal model,

which is capable of handling the leakage induced nonlinearity.

Although building and training the ESN based thermal model

are not difficult, it is not straightforward to integrate such

model into the MPC based DTM framework to compute the

proper future dynamic power recommendations, because exist-

ing MPC based DTM methods require compact linear thermal

models [17], [18], [19]. In this section, we present a newly

designed DTM framework: ESN MPC. In this framework,

the MPC flow is specially modified to adapt the ESN based

nonlinear thermal model, and is able to provide the leakage-

aware power adjustment for multi-core systems.

The framework of the new ESN MPC based leakage-aware

DTM method for multi-core systems is shown in Fig. 5. The

basic task of ESN MPC is to calculate the input dynamic

power recommendation Pd(k + 1), such that the future plant

temperature will track a given temperature target. In order

to do that, the ESN MPC predicts the future temperature

T (k + i|k) using the ESN thermal model (presented in

Section IV-B) with current state estimation x(k). Then, the

proper Pd(k + 1) is solved from an optimization problem

(represented by the “optimization” block in Fig. 5) which

minimizes the difference between the predicted temperature

T (k + i|k) and the target temperature. Note that current

state x(k) is not directly available. It should be estimated

using extended Kalman filter [67] with sensor temperature

information T (k) from the multi-core system plant.

The challenge in the ESN MPC based DTM is how to

handle the nonlinearity of the ESN thermal model properly

in the power recommendation computing process. Now, we

present detailed steps of the ESN MPC based DTM.

First, at current time (assume we are at time k), we denote

the future input dynamic power trajectory (which is unknown

and needs to be computed in the end) into the future Nc steps

(where Nc is called the control horizon in MPC) as

Pd = [Pd(k + 1)T , Pd(k + 2)T , . . . , Pd(k +Nc)
T ]T ,

and the future input dynamic power difference trajectory as

∆Pd = [∆Pd(k + 1)T ,∆Pd(k + 2)T , . . . ,∆Pd(k +Nc)
T ]T ,

where ∆Pd(k + i) = Pd(k + i)− Pd(k + i− 1) ∈ R
n, Pd ∈

R
Ncn, ∆Pd ∈ R

Ncn.

Then, the temperature predictions from current time k into

the future Np steps (where Np is called the prediction horizon

in MPC), denoted as T (k + i|k), i = 1, 2, . . . , Np, can

be expressed as a function of Pd, using the ESN thermal

model (9) and current temperature information T (k) read from

thermal sensors in the multi-core system. These temperature

predictions are written in vector trajectory T ∈ R
Npn as

T = [T (k + 1|k)T , T (k + 2|k)T , . . . , T (k +Np|k)
T ]T ,

where T (k+ i|k)T is the predicted temperatures at time k+ i
using information of current time k.

Similarly, the target temperature vector Ttg is written in a

vector trajectory Ttg ∈ R
Npn as

Ttg = [TT
tg, T

T
tg, . . . , T

T
tg]

T .

Next, we will introduce the optimization process in ESN

MPC, which is represented by the “optimization” block in

Fig. 5. As briefly mentioned before, the objective of the MPC

based DTM is to compute the proper power recommendation

which brings the predicted output temperature T as close as
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possible to the target temperature Ttg . This control problem is

transformed into the following optimization problem

minimize ‖Ttg − T ‖2. (11)

Note that T is a function of the input power trajectory Pd,

so this optimization problem looks for the optimal future

power trajectory Pd (power recommendation) which mini-

mizes ‖Ttg − T ‖2.
For practical usage, a regulation term rw‖∆Pd‖2 may be

added to the original cost function in the optimization prob-

lem (11), to form the new regulated optimization problem [71],

[72]

minimize ‖Ttg − T ‖2 + rw‖∆Pd‖2, (12)

where rw is a tuning parameter. In order to facilitate presen-

tation, we can rewrite optimization problem (12) as

minimize F(Pd) = ΨTΨ+∆PT
d Rw∆Pd, (13)

where Ψ = Ttg − T ∈ R
Npn. Rw = rwI ∈ R

Ncn×Ncn is a

diagonal matrix and I ∈ R
Ncn×Ncn is identity matrix.

Then, the remaining steps focus on how to compute the

power recommendation trajectory to minimize F(Pd) in (13).

In order to find the Pd which minimizes the nonlinear function

F , the procedure is to compute the gradient of F against

Pd, and search the solution Pd along the direction where the

gradient of F decreases in an iterative way. In this work, we

use Levenberg-Marquardt (LM) algorithm [73] for the solution

search.
LM algorithm uses continuous iterations to search for the

optimal solution. In each iteration, it will compute a search

offset ∆ε, and update the solution Pd as

Pd ← ∆ε+ Pd. (14)

The problem now is how to calculate the search offset ∆ε.
Let us denote the Jacobian matrices of Ψ and ∆Pd as F1 and

F2, respectively:

F1 =
∂Ψ

∂Pd

, F2 =
∂∆Pd

∂Pd

.

Then the offset ∆ε in LM algorithm is calculated as

∆ε = −(M + τdiag(M))−1(FT
1 Ψ+ FT

2 Rw∆Pd), (15)

where

M = FT
1 F1 + FT

2 RwF2,

and τ is the (non-negative) damping factor that is adjusted at

each iteration. If the value of F decreases after an iteration,

divide τ by v, where v is set by experience. Inversely, if the

value of F increases after an iteration, multiply τ by v. Please

note that ∆ε in equation (15) can be solved using Gaussian

elimination efficiently without computing (M+τdiag(M))−1

explicitly.
In order to calculate ∆ε using equation (15), we still need

to compute the Jacobian matrices F1 and F2.
For the first Jacobian matrix F1, we can write it in the

following form as

F1 = −













∂T (k+1|k)
∂Pd(k+1)

∂T (k+1|k)
∂Pd(k+2) · · · ∂T (k+1|k)

∂Pd(k+Nc)
∂T (k+2|k)
∂Pd(k+1)

∂T (k+2|k)
∂Pd(k+2) · · · ∂T (k+2|k)

∂Pd(k+Nc)

...
...

. . .
...

∂T (k+Np|k)
∂Pd(k+1)

∂T (k+Np|k)
∂Pd(k+2) · · · ∂T (k+Np|k)

∂Pd(k+Nc)













,

(16)

where
∂T (k+i|k)
∂Pd(k+j) ∈ R

n×n and F1 ∈ R
Npn×Ncn.

Using the ESN equations (9),
∂T (k+i|k)
∂Pd(k+j) can be easily

computed in the following way.

• For all i < j, since the future inputs do not affect current

outputs, we get

∂T (k + i|k)

∂Pd(k + j)
= 0, (17)

where 0 is a n× n zero matrix.

• For all i = j, we obtain

∂T (k + i|k)

∂Pd(k + j)
= E

∂x(k + i|k)

∂Pd(k + j)
+H, (18)

where

∂x(k + i|k)

∂Pd(k + j)
= γdiag(f ′(z(k + i|k)))A,

and z(k + i|k) = APd(k + i) +Dx(k + i− 1|k).
• For all i > j, there is

∂T (k + i|k)

∂Pd(k + j)
= E

∂x(k + i|k)

∂Pd(k + j)
, (19)

where

∂x(k + i|k)

∂Pd(k + j)
=(1− γ)

∂x(k + i− 1|k)

∂Pd(k + j)

+ γdiag(f ′(z(k + i|k)))

·

(

D
∂x(k + i− 1|k)

∂Pd(k + j)

)

.

Finally, F1 can be computed by using the formulas above.

Because ∆Pd has a linear relationship with Pd (specifically,

there is ∆Pd(k+i+1) = Pd(k+i+1)−Pd(k+i)), the second

Jacobian matrix F2 is easy to compute as shown below.

• For all i = j, we have

∂∆Pd(k + i)

∂Pd(k + j)
= I, (20)

where
∂∆Pd(k+i)
∂Pd(k+j) ∈ R

n×n for all cases.

• For all i = j + 1, there is

∂∆Pd(k + i)

∂Pd(k + j)
= −I. (21)

• For all other cases, we have

∂∆Pd(k + i)

∂Pd(k + j)
= 0. (22)

In summary, F2 can be simply written in the following form

F2 =













I 0 · · · 0 0

−I I · · · 0 0

...
...

. . .
...

...

0 0 · · · I 0

0 0 · · · −I I













. (23)

Now, for each iteration, we have Jacobian matrices F1

and F2. Then, we can compute the search offset using equa-

tion (15), and update the solution for the next iteration using

equation (14). Such iteration will continue until convergence

is reached.
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Fig. 6: The configuration of the 16-core chip used in the

experiment.

Note that we get a solution Pd by iteration at each time

step, but only its first element Pd(k + 1) will be outputted as

the power recommendation for thermal management. With the

guidance of the power recommendation Pd(k + 1), thermal

management actions will be performed to make the output

temperatures T track the target temperature Ttg (or simply

lower than Ttg if the system task loads are light). For a simple

thermal management scheme, we can just lower the frequency

of a heavy loaded core to make its dynamic power equal to the

recommended dynamic power. Advanced thermal management

actions based on power recommendation is also viable, such

as the one presented in our previous work [19].

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the newly

proposed leakage-aware DTM method. The experiment is per-

formed using a 16-core system plant with chip configuration

shown in Fig. 6. We place one thermal sensor for each core,

which provides the on-chip temperature information to the

extended Kalman filter in the DTM process as shown in

Fig. 5. The ambient temperature is set to be 25 ◦C, and the

target temperature in thermal management is set as 85 ◦C. By

using the PTM-MG 7 nm FinFET model for high-performance

applications [59], the leakage power is set to be around 40%
of total power at 85 ◦C according to reference [74]. The ESN

model is built by using the ESN toolbox provided online [75].

All the experiments are performed in MATLAB, including the

building and training of the ESN based thermal model. All the

results are obtained on a PC with Intel Core i5-2400 CPU and

4 GB memory.

In order to show the accuracy of the ESN model, we com-

pare it with the recently proposed artificial neural networks

(ANN) based method [48]. Then, to illustrate the advantages

of our control method (ESN based MPC), we compare it with

the state-of-the-art leakage-aware DTM method for multi-core

systems called MAGMA [45]. We use the MAGMA open

source code provided in [45], and link it to the same multi-

core system plant used for our new method with the same

settings. Since MAGMA is based on linear approximation

thermal model to handle the nonlinear leakage temperature

dependency, its linear approximation range is set to a practical

range of 35 ◦C to 115 ◦C.

A. Accuracy analysis of the ESN based leakage-aware thermal

model

For model based control method, it is critical to build a

thermal model which is accurate across the temperature control

range. As a result, before testing the new leakage-aware DTM
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Fig. 7: The average absolute errors of ESN model with

different numbers of neurons in the hidden layer. Validation

error reaches minimum at around 350 neurons in the hidden

layer.

method, we first verify the accuracy of the ESN based thermal

model, which naturally considers the nonlinearity between

leakage and temperature. We also use thermal model built by

ANN [48] for comparison.

In this experiment, we define the golden temperature data

as the most accurate leakage-aware chip temperature data we

can get, which is obtained by using iteration based leakage-

aware thermal simulation method (which is very accurate but

time consuming as briefly introduced in Section III-B and

discussed in details in our previous work [34]) with thermal

model extracted from HotSpot [76]. The simulation time step

is set as 0.01 s to ensure accuracy.

By using the golden temperature data, we can acquire the

training and validation data to build the thermal models. Since

we set the thermal management cycle in DTM to be 1 s, we

use the power input averaged every 100 simulation steps (each

simulation step is 0.01 s) and the golden temperature data at

the end of each 100 simulation steps as one data sample for the

training and validation of the ESN model. We collected 65000
samples in total, and out of which, we use 38000 samples for

training and 27000 samples for validation. It is well known

that the accuracy of the neural network is highly related to the

training samples. As a result, in addition to creating a wide

range of output temperatures (for example, from 0 s to 2000 s
in Fig. 8), we also manually create some output temperature

samples around the management target temperature 85 ◦C (for

example, from 2000 s to 3000 s in Fig. 8) to enhance/verify

the thermal model accuracy in the DTM process. Both ESN

based and ANN based thermal models share the same training

and validation data for a fair comparison.

In order to see the model accuracy and computing overhead

with different model sizes, we test ESN models with different

neuron numbers in the hidden layer. The average errors for

training and validation of the ESN model with different sizes

are shown in Fig. 7, where the value of γ in equation (9)

is 0.2 for all cases and the error is defined as the difference

between the golden temperature and the output temperature

of ESN model. From Fig. 7, we can see that the training

error decreases as the ESN model size increases, and gets

saturated at around 100 neuron in the hidden layer. On the

other hand, the validation error decreases first as the model size

increases. It starts to increase later, after reaching its smallest

value 0.19 ◦C at neuron number 350, which clearly indicates
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Fig. 8: The output temperatures of core C32 in the validation

test using ESN model and ANN model [48], where the other

cores have similar comparison results. We deliberately created

temperature data close to the target temperature 85 ◦C from

2000 s to 3000 s, in order to verify the thermal management

performance around the target temperature.

overfitting. We remark that the optimal number of neurons

in the hidden layer should be determined by trading-off the

validation error and runtime computing overhead (shown later

in Table II) according to different application requirements,

and also by avoiding the overfitting problem [77], [78], [79].

Since the ESN model will be used in DTM at runtime,

in this work, we use a moderate sized ESN model with 50
neurons in the hidden layer (with average validation error of

0.40 ◦C), which balances the computing overhead and accu-

racy. We plot the transient validation error of this ESN model

in Fig. 8. Note that in order to verify the thermal management

performance around the target temperature (which is 85 ◦C in

this experiment), we deliberately make the temperature data

to be close to 85 ◦C from 2000 s to 3000 s.
For comparison, we also plot the results of the recently

proposed ANN based thermal model [48] in Fig. 8. This ANN

model has three hidden layers with 15 neurons in each layer,

which is the ANN configuration with the smallest error in our

test. As seen from the figure, the ANN model has significantly

larger error (with average validation error of 3.15 ◦C) than

the new ESN based model (with average validation error of

0.40 ◦C). The reason is that ESN method has the recurrent

structure which makes it more suitable for dealing with time

series problems and modeling dynamic systems than ANN

without recurrent structure [50], [63].

B. Performance evaluation of leakage-aware DTM with ESN

MPC

After analyzing the accuracy of the ESN based leakage-

aware thermal model, we evaluate the performance of the new

leakage-aware DTM method with ESN MPC.

The experimental flow diagram for the performance eval-

uation of the ESN MPC based DTM is given previously in

Fig. 5, where the blue phrases in parentheses are the tools used

to implement the specific blocks in our experiment. Power

estimator Wattch [80] is used to generate the dynamic power

by running the standard SPEC benchmarks. The different

power traces from SPEC benchmarks are randomly assigned

to different cores of the multi-core system. Leakage power

of the multi-core system plant is obtained by using the
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Fig. 9: Comparison results of different thermal management

methods including ESN MPC, MAGMA [45], golden thermal

model with linear leakage, and baseline method. The dynamic

power is supplied to the cores starting from 5 s. The tracking

temperature target is set as 85 ◦C.

iteration based leakage-aware thermal simulation method with

simulation step 0.01 s.
In order to choose a better ESN MPC configurations, we

test DTM methods with different model sizes for ESN MPC

(by changing the number of neurons in the hidden layer). In

addition, we also test different MPC prediction horizon lengths

(Np) and control horizon lengths (Nc). In the experiment, we

set the purpose of the leakage-aware DTM as making the

output temperature to track the target temperature 85 ◦C. rw
in MPC is chosen as 0.1 by trial and error.

The results of ESN MPC method are shown in Table II.

We mainly focus on two DTM performances. The first is

the temperature tracking difference between the actual plant

temperature and the target temperature, which represents the

effectiveness and accuracy of the management. The second

is the overhead (computing overhead (runtime) and memory

cost) of the DTM, with respect to different ESN model sizes

as well as different Np and Nc.

From Table II, we can see that the average plant temperature

tracking difference against the target is smaller than 3 ◦C for

all cases. For the best case in this test (with 350 neurons in the

hidden layer and Nc = 1, NP = 2), the average tracking dif-

ference is only 1.32 ◦C. However, the memory cost is 960KB
and the runtime for this case is greater than 120ms for each

thermal management frame of 1 s, which is an unacceptable

computing overhead as an on-line algorithm. By balancing

the tracking difference and overhead, we choose the DTM

configuration as: ESN model which has 50 neurons in the
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TABLE II: Runtime (time), memory cost (mem), prediction difference (pred diff), and tracking difference (track diff) results

of the new ESN MPC based DTM method. Runtime is recorded as the average computing time for each thermal management

action (every 1 s). Prediction difference is the temperature difference between the target temperature and the temperature

prediction in the ESN MPC using the computed power recommendation. Tracking difference is the temperature difference

between the target temperature and the actual plant temperature with ESN MPC. The prediction difference and the tracking

difference are in ◦C.

Neuron # Nc = 1,Np = 1 Nc = 1,Np = 2 Nc = 1,Np = 3 Nc = 2,Np = 3
in ESN time mem pred diff track diff time mem pred diff track diff time mem pred diff track diff time mem pred diff track diff

hidden layer (ms) (KB) max avg max avg (ms) (KB) max avg max avg (ms) (KB) max avg max avg (ms) (KB) max avg max avg

10 7 4 1.17 0.68 7.95 2.79 10 6 1.26 0.75 7.72 2.82 12 9 1.22 0.72 7.68 2.81 15 14 1.24 0.73 8.03 2.84
50 14 23 1.10 0.63 5.76 1.60 18 23 0.82 0.42 5.75 1.59 22 24 1.23 0.75 5.92 1.60 23 26 1.29 0.82 5.86 1.62
150 28 106 1.16 0.66 5.52 1.51 38 106 0.99 0.55 5.55 1.49 46 106 0.84 0.49 5.59 1.45 55 106 1.05 0.72 5.62 1.49
250 37 300 1.18 0.71 5.26 1.43 64 300 0.87 0.59 5.15 1.40 91 300 0.94 0.65 5.25 1.42 110 300 1.01 0.67 5.24 1.44
350 68 960 1.20 0.74 4.92 1.33 121 960 0.85 0.46 4.87 1.32 170 960 0.90 0.48 4.90 1.34 201 960 1.19 0.78 5.03 1.39
450 102 1584 1.01 0.64 5.31 1.44 239 1584 1.09 0.65 5.22 1.40 375 1584 1.05 0.63 5.12 1.37 502 1584 1.07 0.67 5.13 1.42
550 146 2364 0.98 0.58 5.81 1.51 340 2364 1.00 0.51 5.83 1.50 552 2364 0.86 0.41 5.86 1.52 792 2364 1.12 0.75 5.87 1.53

hidden layer with Nc = 1, NP = 2. In this case, the average

tracking difference is 1.59 ◦C, the memory cost is 23KB and

the runtime is only 18ms for the 16-core system. Because such

computation is performed on only one out of the 16 cores, the

throughput degradation is estimated to be only around 0.1%
at runtime (assuming there are no synchronization problems

in parallel computing) or can be avoided by implementing

the algorithm in low power coprocessor or FPGA. Generally,

the time and memory costs grow linearly with model size, but

there is an optimal model size for accuracy because overfitting

may happen if the model is too large.

We also record the prediction difference of ESN MPC,

which stands for the temperature difference between the target

temperature and the temperature prediction in the ESN MPC

using the power recommendation. The average prediction

difference is within 1 ◦C for all cases, and this difference is

caused by the regulation term in equation (12).

In order to show the advantage of the new method, we

compare the new method (50 neurons in the hidden layer

with NP = 2, Nc = 1) with the state-of-the-art leakage-aware

DTM method MAGMA [45], which uses linear approximation

to deal with nonlinearity between leakage and temperature.

In MAGMA, each core is divided into 25 thermal blocks

to ensure accuracy. For a fair comparison, we integrated

the open source MAGMA program into the same multi-core

system plant as our new method. In order to do this, we

also added Kalman filter to MAGMA for state estimation,

because the multi-core system plant can only provide the on-

chip temperature through thermal sensors.

We have also performed another comparison to provide

direct evidence that the new ESN based DTM has good

performance in leakage power consideration. We use the

golden linear thermal model (the same as in the plant) with

linear approximation based leakage model (linearized at target

temperature 85 ◦C), and integrate it into the MPC framework.

The thermal management result using this new setting is

called “golden thermal model with linear leakage”. There

is no thermal model error in this new setting, which is an

ideal assumption and actually takes advantage over all other

methods including ESN MPC (there are both thermal model

error and leakage model error mixed inside ESN MPC).

In addition, we have also implemented a leakage-aware

DTM using iteration based thermal prediction, which works as

the DTM baseline for management accuracy (called “baseline”

in short). Since the DTM baseline is based on the golden ther-

mal model (4) and uses iterative method to deal with nonlinear

relationship between leakage and temperature, it avoids errors

in both thermal modeling and leakage modeling. Note that this

method is only used to provide the DTM accuracy baseline,

because its golden thermal model assumption is unrealistic and

its computing overhead is far too large for practical runtime

usage.

The plant temperature comparison results of core C32 using

ESN MPC based method, MAGMA [45], golden thermal

model with linear leakage, and the baseline are shown in

Fig. 9a. The corresponding frequencies of C32 under control

are given in Fig. 9b with the base frequency as 2GHz.

Due to page limitation, we do not plot the results of other

cores which have similar results. Once the dynamic power

is supplied to the cores starting from 5 s, we can see all

DTM controlled temperatures rise from a low temperature

(idle temperature with only leakage power) to the target im-

mediately upon activation with different overshoots.Then, the

temperatures oscillate around the target temperature because

the SPEC power inputs are regulated by thermal management.

For example, when the temperature is higher than the target,

thermal management will lower the temperature in the next

management cycle (by lowering the power input). But if over

adjustment is caused due to the inaccuracy of management,

the temperature will be raised (by increasing power input) in

the next management cycle. From the figure, we observe that

the average temperature tracking difference of baseline is less

than 0.75 ◦C. Such tracking difference is caused by the fast

power variations between two thermal management actions

(with duration of 1 s in this test), which is unavoidable for

any DTM methods.

From Fig. 9a, it is clear that the temperature controlled by

MAGMA [45] shows large temperature tracking difference

(with average tracking difference 4.89 ◦C) against the target

temperature. In fact, the reason that MAGMA shows large

error is mostly two folds. First, MAGMA uses a simple lin-

ear model to approximate the nonlinear relationship between

leakage current and temperature, which is not very accurate

and leads to control accuracy loss. Second, MAGMA ignores

the heat exchange among cores in the multi-core system [45],

which will cause error in control decision.

The new ESN based DTM method shows good tempera-

ture tracking results in Fig. 9a. The temperature controlled

by the new method is very close to the target tempera-

ture (with 1.59 ◦C average tracking difference), which means

the new method even performs very close to the baseline

(within 0.75 ◦C as shown before) in temperature tracking
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accuracy. The reason is that the new method avoids the two

problems in MAGMA as explained here. First, the new method

uses the ESN based leakage-aware thermal model. Since ESN

is a nonlinear model, it is able to accurately model the

nonlinearity between leakage and temperature. This is further

supported by the comparison results between ESN MPC and

the golden thermal model with linear leakage: ESN MPC has

much smaller temperature control overshoot than the latter

method (from 5 s to around 8 s), even with the fact that the

latter method has the ideal golden thermal model.

Second, the ESN based thermal model is a multiple-input

and multiple-output model which considers the core to core

heat exchange (as well as core to package heat exchange).

Furthermore, the MPC framework is improved in this work

to be compatible with this ESN based thermal model, such

that the future power recommendation computed by the ESN

MPC fully considers the heat exchange among cores. From the

observations and discussions above, we can see that leakage-

aware DTM with ESN MPC method outperforms MAGMA in

thermal management quality for multi-core systems.

On the computing overhead side, we have tested the runtime

of both the new method and MAGMA, recorded as the average

computing time for each thermal management action (every

1 s). The new ESN MPC method has a runtime of 18ms,
which is much smaller than that of MAGMA which is 321ms.
In order to increase the speed of MAGMA, we reduce the

resolution of MAGMA to be the same as the ESN based

method (with one thermal node for each core resulting in

46× 46 sized system matrices for MAGMA). In this setting,

the runtime of MAGMA is 101ms, which is still larger than

ESN based method with 50 neurons in the hidden layer (18ms
runtime). The MAGMA accuracy becomes even worse in

this resolution, with average temperature tracking difference

increased to 9.74 ◦C. This tracking difference is significantly

larger than MAGMA with higher resolution 814× 814 sized

system matrices (4.89 ◦C tracking difference) and the ESN

based method with 50 neurons (1.59 ◦C tracking difference).

From the observation above, we can see that even with

a larger model size (814× 814), the tracking accuracy of

MAGMA (with 4.89 ◦C average tracking difference) is worse

than the ESN MPC based DTM method (with 1.59 ◦C av-

erage tracking difference). Reducing computing overhead by

reducing the model size (46× 46) brings even larger tracking

difference (with 9.74 ◦C) for MAGMA.

In summary, experimental results show that the ESN based

leakage-aware thermal model accurately considers the nonlin-

ear effects between leakage and temperature. By integrating

this ESN based thermal model into MPC, the new method

outperforms the state-of-the-art leakage-aware DTM method

MAGMA in both accuracy and speed.

VI. CONCLUSION

In this article, we propose a new leakage-aware DTM

method for multi-core systems using neural network based

thermal models and improved nonlinear model predictive

control. We show that echo state network (ESN) is better

suited for the nonlinear leakage-aware thermal model than the

normal recurrent neural network (RNN) since it is able to

avoid the exploding gradient induced long-term dependencies

problem of RNN in leakage-aware DTM. Based on the new

nonlinear thermal model, we further propose a new leakage-

aware DTM method called ESN MPC, which integrates the

ESN based thermal model to provide the power adjustment

recommendations for the multi-core systems. Experimental

results show that the new method outperforms the state-of-the-

art leakage-aware multi-core DTM method in both temperature

management quality and computing overhead.
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