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ABSTRACT

Performing thermal management on new generation IC chips is

challenging. This is because the leakage power, which is signifi-

cant in today’s chips, is nonlinearly related to temperature, result-

ing in a complex nonlinear control problem in thermal manage-

ment. In this paper, a new dynamic thermal management (DTM)

method with piecewise linear (PWL) thermal model based predic-

tive control is proposed to solve the nonlinear control problem.

First, a PWL thermal model is built by combiningmultiple local lin-

ear thermal models expanded at several Taylor expansion points.

These Taylor expansion points are carefully selected by a system-

atic scheme which exploits the thermal behavior property of the

IC chips. Based on the PWL thermal model, a new predictive con-

trol method is proposed to compute the future power recommenda-

tion for DTM. By approximating the nonlinearity accurately with

the PWL thermal model and being equipped with predictive con-

trol technique, the new DTM can achieve an overall high quality

temperature management with smooth and accurate temperature

tracking. Experimental results show the new method outperforms

the linear model predictive control based method in temperature

management quality with negligible computing overhead.

KEYWORDS

Thermal management, leakage power, multi-core, model predic-

tive control.

1 INTRODUCTION

Power density keeps increasing with technology scaling, causing

severe thermal related problems in high performance multi-core

systems, including system reliability and performance degradation

issues [4]. In order to find economical and efficient methods to

solve the high temperature issue and improve both system perfor-

mance and reliability, researchers have proposed dynamic thermal

management (DTM) methods, which control the thermal behavior

of multi-core systems by management actions including task mi-

gration and dynamic voltage & frequency scaling (DVFS) [5, 8, 12,

13].

However, most DTM methods do not consider leakage power,

resulting in less accurate thermal management. For current high
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performance systems manufactured using new technology, leak-

age power, which even accounts for over 50% of the total power

consumption, cannot be neglected anymore [6]. To make matters

worse, leakage power depends on temperature exponentially, form-

ing a positive feedback between power and temperature, which

can lead to thermal runaway in the worst case. Therefore, the leak-

age power induced thermal problem has already become one of the

most important limiting factors of IC system performance today.

The major challenge of considering leakage power in DTM lies

in building an accurate leakage-aware thermal model which works

well with DTM methods. This is because most DTM methods re-

quire linear thermal model, but the accurate leakage-aware ther-

mal model is inherently nonlinear as aforementioned. There are

very few existing leakage-aware DTM methods by using approxi-

mation based thermalmodels to replace the original nonlinear ther-

mal model. For example, the methods in [3, 5, 13] use linear approx-

imation thermal model. However, they suffer from low accuracy

issue due to the large linear approximation error. Also, DTM with

quadratic polynomial based approximation thermal model was in-

troduced in [11]. Although it has higher accuracy than the lin-

ear approximation based methods, this DTM can only be used for

single-core systems instead of multi-core systems as stated in [11].

The discussions above reveal that it is difficult to design an ac-

curate leakage-aware DTM method for multi-core systems. In this

work, we resolve this problem by proposing a leakage-aware DTM

using piecewise linear (PWL) model based predictive control. The

major contributions of this work include:

• In order to solve the nonlinear control problem in leakage-

aware thermal management, we propose to use the PWL

thermal model to approximate the original nonlinear ther-

mal model. With the PWL thermal model, predictive control

is enabled for leakage-aware DTM.

• We derived the formulation of the PWL thermal model for

leakage-aware DTM. The PWL thermal model formulation

is concise and can be integrated into the predictive control

framework elegantly.

• A systematic Taylor expansion point selection scheme is de-

veloped for the PWL thermal model by exploiting the ther-

mal behavior property of the IC chips.

• We show how to integrate the new PWL thermal model

into the model predictive control (MPC) framework. With

the PWL thermal model based predictive control, accurate

future power recommendations can be computed for the

multi-core system.

• We have experimentally compared the new DTM method

with traditional DTMusing linear thermalmodel basedMPC.

Our numerical results show the new method outperforms

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Comparison of leakage of a TSMC 65 nm process

MOSFET from HSPICE simulation with its curve fitting re-

sult using (2).

traditionalmethod in thermalmanagement qualitywith neg-

ligible overhead introduced.

2 BACKGROUND

In this section, the leakage power model used in this work will be

introduced first. After that, we briefly review thermal management

using model predictive control (MPC) and reveal its problem for

leakage-aware DTM.

2.1 Modeling of the leakage power

The total power of chip is composed of dynamic power pd and

leakage power ps (which is also called static power). The dynamic

power depends on the activity of the chip, and thus can be eas-

ily estimated by performance counter based methods [14]. Unlike

dynamic power, leakage power ps is independent of the chip’s ac-

tivity. Instead, it depends on the temperature of the chip, and can

be modelled as [7, 10]

ps = Vdd Ileak = Vdd (Isub + Iдate ), (1)

Isub = KvT
2e

VGS −Vth
ηvT

(
1 − e

−VDS
vT

)

≈ KvT
2e

VGS −Vth
ηvT ,

(2)

where subthreshold current Isub (which is highly related to tem-

perature) and gate leakage current Iдate (which can be considered

as a constant) are the main parts of leakage current Ileak [7, 10].

vT =
kTp
q is the thermal voltage andTp is a scalar representing the

temperature at one place,1 K and η are process related parameters,

and Vth is the threshold voltage. Apparently, the leakage power

has a complex nonlinear relationship with temperature.

In order to see the accuracy of the leakage power model given

in (1) and (2), Fig. 1 shows an HSPICE simulation result of leakage

using TSMC 65 nm process model and its curve fitting result using

approximate leakage model. From the figure, we can see that the

leakage power model (1), (2) has high accuracy for all common

temperatures of IC chips.

1T introduced latter in (3) is a vector representing temperatures at multiple positions.

2.2 Thermal management using model
predictive control

In order to use model predictive control (MPC), a thermal model

should be built first. For a l-core systemwithm total thermal nodes,

we can get its thermal model as [5, 15]

GT (t) +C
dT (t)

dt
= BP(T , t),

Y (t) = LT (t),
(3)

where T (t) ∈ Rm is the temperature vector (distinguished from

scaler Tp ), representing temperatures atm places of the chip and

package;G ∈ Rm×m andC ∈ Rm×m contain equivalent thermal re-

sistance and capacitance information respectively; B ∈ Rm×l con-

tains the power injection topology information; P(T , t) ∈ Rl is

the power vector of l cores, including both dynamic power vector

Pd (t) and leakage power vector Ps (T , t). Y (t) ∈ Rl is the output

temperatures of l cores; L ∈ Rl×m is the output selection matrix

which selects the l core temperatures from T (t).

In order to be used in computer, the thermal model (3) is dis-

cretized for a given time step h as [9]

T (k + 1) = AT (k) + DPd (k)

+

∫ h

0
e−(h−τ )C

−1GC−1BPs (T , τ ) dτ ,
(4)

with

A = e−hC
−1G
, D =

∫ h

0
e−(h−τ )C

−1GC−1B dτ ,

where k is the time in discrete form.2 Note that A ∈ Rm×m and

D ∈ Rm×l are constant matrices which are computed offline for a

given time step h [9].

By using thermal model (4), MPC calculates the future power

recommendation Pd in order to track a user defined temperature,

with the following steps.

First, at current time k , we denote the future dynamic power

trajectory (which is unknown and needs to be computed in the

end) into the futureNc steps (whereNc is called the control horizon

in MPC) as

Pd = [Pd (k)
T
, Pd (k + 1)

T
, . . . , Pd (k + Nc − 1)T ]T . (5)

Then, the prediction of core temperatures is written as

Y = [Y (k + 1)T ,Y (k + 2)T , . . . ,Y (k + Np )
T ]T , (6)

where Np is called the prediction horizon (with Np > Nc ) in MPC

and Y (k + j) is the predicted temperatures at time k + j using infor-

mation of current time k .

Corresponding to (6), the target temperature vector Yд ∈ Rl is

written in a vector trajectory as

Yд = [YTд ,Y
T
д , . . . ,Y

T
д ]T . (7)

The objective of the MPC is to bring the predicted output tem-

perature Y as close as possible to the target temperature Yд by

adjusting the dynamic power Pd , which is equivalent to minimiz-

ing the following cost function

J = (Yд − Y)T (Yд − Y) + PT
d
RPd . (8)

2We use k to represent the discrete time, and t to represent the continuous time. k +1
is equivalent to t + h, with h as the discretization time step.
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Here R = r INc l×Nc l is tuning matrix with r as the tuning param-

eter. The regulation term PT
d
RPd is added to the cost function in

(8) because we prefer power distribution not to change drastically

for practical consideration [1, 16].

Next, optimization is performed to find thePd whichminimizes

(8). However, because there is an integral with the nonlinear Ps
in thermal model (4), we cannot express Y using Pd as the vari-

able. Therefore, the optimization problem (8) cannot be solved to

find the future power recommendation, meaning predictive con-

trol cannot be directly used for the leakage-aware thermal man-

agement.

3 LEAKAGE-AWARE DTM USING PIECEWISE
LINEAR MODEL BASED PREDICTIVE
CONTROL

In this section, we present the new leakage-aware DTM method

using PWL model based predictive control.

3.1 Building local linear thermal model using
Taylor expansion

Before presenting the PWL methods, we first show the formula-

tion of the local linear thermal model (at a Taylor expansion point)

which will be used in PWL approximation.

First, we can get a local linear leakage power model by perform-

ing Taylor expansion on the original nonlinear model (1), (2), ex-

pressed in matrix-vector form as

Ps = P̂ + ĤT , (9)

where P̂ ∈ Rl is a constant vector not associated with temperature

T . Ĥ ∈ Rl×m is a constant rectangular diagonal matrix. Due to the

page limitation, please refer to [15] for the detailed derivation.

Then, by integrating (9) into (3) and letting Ĝ = G − BĤ , we

obtain a local linear thermal model as

ĜT (t) +C
dT (t)

dt
= B(Pd (t) + P̂),

Y (t) = LT (t).
(10)

Similar to (4), the local linear thermal model (10) can be dis-

cretized into the following form butwithout the integral term in (4):

T (t + h) = Â(h)T (t) + D̂(h)Pd + D̂(h)P̂, (11)

where

Â(h) = e−hC
−1Ĝ
, D̂(h) =

∫ h

0
e−(h−τ )C

−1ĜC−1B dτ .

3.2 PWL thermal model formulation

In this part, we formulate the PWL thermal model using the lo-

cal linear thermal model presented in Section 3.1. The PWL ther-

mal model can then be integrated into the predictive control frame-

work for leakage-aware DTM.

3.2.1 Taylor expansion thermal points selection scheme for leakage-

aware DTM. Although there is PWL approximation based leakage-

aware thermal estimation method [15], it is not straightforward to

apply similar PWL approximation to DTM due to the difficulty in

Taylor expansion thermal points selection. In thermal estimation

Figure 2: The sketchmap of the PWLmethod for one control

step. T1,T2, . . . ,Tn are the potential Taylor expansion points.

t, t +h1, . . . , t +hn are the potential local linear model switch-

ing time points. The black solid line is the extreme temper-

ature trajectory. The red dashed line is a common tempera-

ture trajectory. The blue dot line represents the temperature

trajectory which is already very close to the target at time t .

problem, the Taylor expansion point can be easily chosen by us-

ing the self-estimated temperature or the on-chip thermal sensor

temperature [15]. However, DTM will not know the proper Taylor

expansion points directly, because its computing target is the fu-

ture power recommendation, not the temperature. The only things

that DTM knows are the current temperature, the target temper-

ature, and also the fact that the temperature prediction trajectory

(excited by the unknown future power recommendation to be com-

puted) should be between the two temperatures. In this work, we

propose a novel Taylor expansion points selection scheme as the

following.

First, we define two thermalmanagement cases called rising case

and falling case, depending on the current temperature of the core.

We have the falling case if the current temperature is higher than

the target temperature. DTM should lower the core temperature to

target temperature for reliability in this case. Otherwise, we have

the rising case for performance. Here we use the rising case as

illustration example. Please note that DTM for the falling case can

be performed in the same way.

Let us denoteT0 as the lowest temperature andTn as the target

temperature of the chip.3 The operating temperature of rising case

lies betweenT0 andTn . We introduce n potential expansion points

in the operating temperature range: {T1,T2, . . . ,Tn }.
4 For simplic-

ity, assume all the potential expansion points are uniformly placed

in the operating temperature range, i.e.,Ti −Ti−1 =
Tn−T0

n for any

integer i ∈ [1,n], as shown in Fig. 2.

Next, corresponding to the Taylor expansion points, we also

need to determine the potential local model switching time points

{t, t + h1, . . . , t + hn } within one control step. The extreme tem-

perature trajectory in the rising case, which starts from T (t) = T0
and ends at T (t + hn ) = Tn is used to determine these time points.

As shown in Fig. 2, the extreme temperature trajectory is the solid

3Usually, the lowest temperature is set to be the same or slightly higher than the
ambient temperature.
4Please note that T0 is not a potential Taylor expansion point.
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black line, and the switching time point t +hi is chosen as the one

which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local

thermal models constructed using some of these potential Taylor

expansion points {T1,T2, . . . ,Tn } switched only at the correspond-

ing switching time points {t, t + h1, . . . , t + hn } as shown in the

next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-

rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal

prediction trajectory should look like the red dashed line in Fig. 2

exited by the future power recommendation (which is unknown

and need to be computed).5 For this trajectory, T (t + hn ) can be

represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using

the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal

matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +

hi+2, . . ., t +hn are represented iteratively by using the local linear

thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-

tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +

2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is

expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the

discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-

mal model. The PWL thermal model matrices will be computed

offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear

temperature prediction using the PWL thermal model in (15). Next,

we will demonstrate how to formulate the PWL thermal model

based predictive control by replacing the original nonlinear ther-

mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control

With the PWL thermal model (15), MPC should be able to calcu-

late the power recommendation Pd to track a user defined output

temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-

ature prediction trajectory can be described as the following. For

the first control time step7 into the future, the temperature predic-

tion trajectory is similar to the red dashed line in Fig. 2, because

the power recommendation will bring the temperature toward the

target temperature. Assume the temperature prediction is close to

the target temperature at time k + 1, then at time k + j, where

j = 2, 3, . . . ,Np , all temperature prediction trajectories should look

like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-

tion into the future (from k to k + Np ), we only need to use the

temperature prediction with multiple Taylor expansion points at

the first control step (from time k to k + 1) expressed by the PWL

thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only

one segment of the PWL thermal model (11) is needed with target

temperature Yд (which equals to Tn ) as the expansion point. The

temperature predictions for these steps are expressed by simply

changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .

Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
T
i+1, . . . , P̂

T
n ]

T , P̂n = [0T , P̂Tn , . . . , P̂
T
n ]

T ,

F =



LÂ

LÂnÂ
.
.
.

LÂ
Np−1
n Â



,

V =



LD̂ 0 · · · 0

LÂnD̂ LD̂n · · · 0

LÂ2
nD̂ LÂnD̂n · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

LÂ
Np−1
n D̂ LÂ

Np−2
n D̂n · · · LÂ

Np−Nc

n D̂n



,

ϕ1 =



LD̂i LD̂i+1 · · · LD̂n

LÂnD̂i LÂnD̂i+1 · · · LÂnD̂n

LÂ2
nD̂i LÂ2

nD̂i+1 · · · LÂ2
nD̂n

.

.

.

.

.

.
.
.
.

.

.

.

LÂ
Np−1
n D̂i LÂ

Np−1
n D̂i+1 · · · LÂ

Np−1
n D̂n



,

7Please note that the duration from t to t + hn in Fig. 2 equals to only one control
step in MPC (for example, from k to k + 1, or from k + j − 1 to k + j ).
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Figure 3: The configuration of the 16-core chip used for the

experiment.

ϕ2 =



0 0 0 · · · 0

0 LD̂n 0 · · · 0

0 LÂnD̂n LD̂n · · · 0

0 LÂ2
nD̂n LÂnD̂n · · · 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

0 LÂ
Np−2
n D̂n LÂ

Np−3
n D̂n · · · LÂ

Np−Nc

n D̂n



,

with 0 as the zero matrix with suitable size.

Plugging (17) into (8), standard MPC optimization is performed

to minimize (8) by making the first derivative of (8) (with respect

to Pd ) equal to zero. The solution of Pd is

Pd = (VTV + R)−1VT (Yд − FT (k) − ϕ1P̂ − ϕ2P̂n ). (18)

At each MPC time k , only Pd (k) (the first element of Pd ) will

be outputted as the power recommendation for thermal manage-

ment. Frequencies and task loads of the multi-core system will be

adjusted according to Pd (k). How to perform the management ac-

tions based on future power recommendation is presented in many

DTM works such as [13], which will not be given here due to page

limitation.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we evaluate the performance of the new leakage-

aware DTM method.

4.1 Experiment setup

The experiment is performed on a 16-core system plant with its

chip configuration shown in Fig. 3. We place one thermal sensor

for each core, which provides on-chip temperature information for

the DTM. The ambient temperature is 40 ◦C, and the target temper-

ature in DTM is 80 ◦C. We set the operating temperature range for

the rising case as from 40 ◦C to 80 ◦C, and the range for the falling

case as from 120 ◦C to 80 ◦C. All the experiments are performed on

a PC with an Intel Core i5-2400 CPU and 4 GB memory.

Power estimator Wattch [2] is used to generate the dynamic

power by running the standard SPEC benchmarks. The different

power traces from SPEC benchmarks are randomly assigned to dif-

ferent cores of the multi-core system. The golden leakage power

of the multi-core system plant is obtained by using the iteration

based leakage-aware thermal simulation method with simulation

step 1ms to ensure accuracy. The control step of DTM is set as 1 s.

In order to show the advantage of the new DTM method with

PWL model based predictive control (we call it the new DTM), we

compare it with the traditional DTM method with linear model

based MPC [13] (called the traditional DTM). The traditional DTM

shares the same settings as the new DTM except that its only Tay-

lor expansion point is set at the target temperature (80 ◦C).

4.2 Performance evaluation of leakage-aware
DTM with PWL model based predictive
control

We apply both the new DTM and traditional DTM, and record the

management performance results in Table 1. In order to see the

accuracy of the new DTM with different configurations, we test it

with different expansion point number, prediction horizon length

Np , and control horizon length Nc .

We mainly focus on two DTM performances in the comparison.

The first is the temperature tracking difference between the actual

plant temperature and the target temperature, which indicates the

effectiveness and accuracy of the DTM. The second is the overhead

(computing time and memory cost) of the DTM, with respect to

different numbers of expansion points as well as different Np and

Nc .

For traditional DTM, the difference between the actual temper-

ature and the target temperature is large for all cases as shown in

Table 1. Even for the best case (Nc = 1, Np = 2), the average dif-

ference is over 1.3 ◦C and the maximum difference is around 6 ◦C.

This is because the linear model cannot approximate the nonlin-

earity in leakage power accurately.

On the contrary, for the newDTM, the temperature tracking dif-

ference is much smaller than the traditional DTM for all cases. The

tracking accuracy improvement is achieved by approximating the

nonlinearity accurately using the PWL thermal model. Especially,

the average tracking difference is only 0.72 ◦C when the number

of expansion points is 11.

On the runtime side, we observe that the computing time of the

new DTM is only a little higher than that of the traditional method,

because the new DTM has one more term (ϕ1) than the traditional

DTM. But still, the new DTM is extremely fast, with only less than

1.2ms computing time for each 1 s control step. Since the compu-

tation is performed on one core out of the 16 cores, this overhead

only leads to around 0.01% system throughput degradation.

Memory cost of the new DTM is higher than traditional DTM,

which also increases linearly with the expansion point number as

shown in Table 1. This is because more matrices computed offline

need to be stored, such as the PWL thermal model matrices F and

ϕ1. It is the major trade-off between accuracy and overhead in the

new DTM. For practical usage, engineers need to balance the ac-

curacy and memory cost by choosing the proper Taylor expansion

point number.

Finally, we plot the transient plant temperature comparison re-

sults in Fig. 4 by activating both DTMs at 1 s. We only plot the

results of core C32 due to page limitation. It is observed that the

temperature controlled by traditional DTM shows large tracking

overshot especially when the current temperature is far from tar-

get (from 1 s to 2 s). On the other hand, the temperature controlled

by the new DTM tracks the target accurately. This clearly demon-

strates the advantage of the new DTM in thermal management

quality.
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Table 1: Computing time (time), storage memory (mem), and tracking difference (difference) comparison results of the tradi-

tional DTM and new DTM. Computing time is recorded as the average computing time for each thermal management action

(every 1 s). The tracking difference is in ◦C.

Nc = 1,Np = 1 Nc = 1,Np = 2 Nc = 1,Np = 3 Nc = 2,Np = 3

Methods time mem difference time mem difference time mem difference time mem difference

(ms) (KB) max avg (ms) (KB) max avg (ms) (KB) max avg (ms) (KB) max avg

Traditional 1.01 7 6.02 1.35 1.13 13 5.97 1.32 1.22 21 5.86 1.34 1.30 23 5.94 1.37

New (3 points) 1.12 14 1.25 0.84 1.28 23 1.20 0.81 1.39 42 1.21 0.82 1.46 44 1.23 0.85

New (5 points) 1.12 22 1.21 0.79 1.28 36 1.16 0.78 1.39 65 1.18 0.80 1.47 67 1.20 0.82

New (7 points) 1.13 32 1.15 0.77 1.29 51 1.12 0.75 1.40 91 1.09 0.76 1.47 94 1.13 0.79

New (11 points) 1.14 58 1.08 0.75 1.30 90 1.05 0.72 1.42 150 1.11 0.74 1.49 154 1.09 0.75
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Figure 4: The transient temperatures of C32 using the new

DTM (with 5 expansion points) and traditional DTM. Both

methods have NP = 2 and Nc = 1. The temperature target is

set as 80 ◦C. Both DTM methods are activated at 1 s.

In summary, experimental results show that the new DTM out-

performs the traditional DTM in thermalmanagement qualitywith

negligible computing overhead. Trade-off between accuracy and

memory cost of the new DTM can be made by adjusting the Tay-

lor expansion point number.

5 CONCLUSION

In this paper, we have proposed a new leakage-aware DTMmethod

for multi-core systems using PWL model based predictive control.

We built a PWL thermal model by combining multiple local lin-

ear thermal models expanded at several Taylor expansion points.

These expansion points are selected by a systematic scheme which

exploits the thermal behavior property of the IC chips. Based on

the PWL thermal model, predictive control is used to find the opti-

mal future power recommendations for thermal management. Ex-

perimental results show the new method outperforms the linear

model basedMPCmethod in temperaturemanagement qualitywith

negligible computing overhead.
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